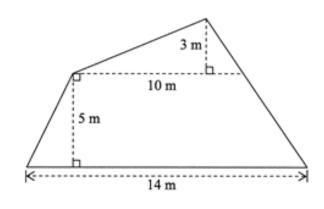

排水法一 實物操作?解難活動?科學實驗?

周偉志先生(高級學校發展主任) 文美玉老師(香海正覺蓮社佛教正慧小學)

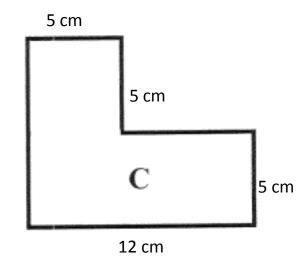
甚麼是排水法?

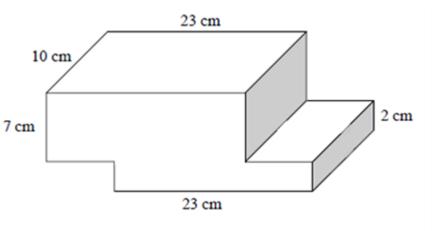


學生處理哪類情況的問題較為困難?

(圖示取自TSA題目)

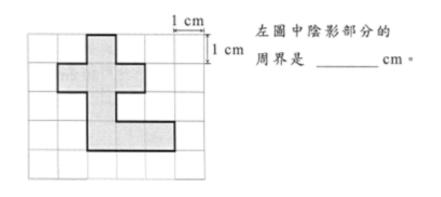
排水法有甚麼特別?

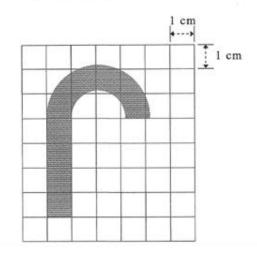

學生如何解答不規則(平面/立 體)圖形的周界、面積及體積的 問題?


上圖的面積是 ______ m²。

運用分割等方法後以公式計算

(TSA 題目)

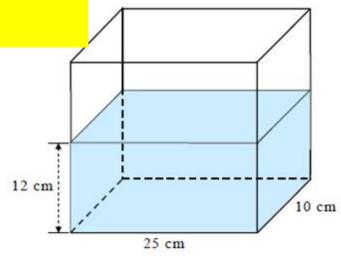

上圖的周界是____cm。


上圖立體的體積是 _____cm3。

排水法有甚麼特別?

學生如何解答不規則(平面/立 體)圖形的周界、面積及體積的 問題?

下圖中,每個小方格的邊長是 1 cm,陰影部分的面積 约是 $\underline{\hspace{1cm}}$ cm^2 。 (以整數作答)


運用周界或面積的概念解答問題

(TSA 題目)

排水法有甚麼特別?

學生如何解答不規則(平面/立 體)圖形的周界、面積及體積的 問題?

透過一物理現象間接地解答問題

- (a) 上圖長方體容器內有水 _____ L。
- (b) 把 完全沉入水中後,水位升高至 16 cm。

(TSA 題目)

的體積是 _____cm3。

體積的定義

體積有三種意義,包括一個容器所能容納的量、基本體 積單位的數量,以及當物體放入液體後所被取代的量。 Hart (1981)

皮亞傑對體積下了二個解釋,其一是內部體積 (interior volume),所指的是物體邊界內的空間, 即物體實際可容納的空間;其二是物體所佔的體積 (occupied volume),即其他物質(例如:水)包圍 著一個物體的空間,例如當一物體放入水後所排出的體 積。

Potari和Spiliotopoulou (1996)

排水法的學習活動是……

- 一實物操作?
- 一解難活動?
- 一科學實驗?

排水法的學習活動可以讓學生……

從探究活動中建立概念

從實作活動中解決問題

從延伸活動中拓寬思考

從探究活動中建立概念

活動一:容量與體積的關係

活動二:底面積、高和體積的關係

活動三:排水法的驗證

從實作活動中解決問題

活動四:運用排水法求不規則立體的體積

活動五:運用排水法求一粒波子的體積

從延伸活動中拓寬思考

活動六:在水未能完全蓋過立體下找出體積

活動七:求浮於水面立體的體積

學習活動的元素

- 活動開始時由問題引發
- 老師和同學共同討論解決方法
- 從實驗中解答問題
- 觀察實驗得的數據並作出推論
- 綜合自己及全班的數據並作出分析
- 學生在全班討論中解釋結論並接受 同學提問
- 全班共同總結課堂

從探究活動中建立概念

活動一

哪個水箱的容量最大?

學生明白容量和體積的關係嗎?

- 老師帶出問題
- 學生先估計結果
- 老師和同學討論解決問題的方法
- 老師著同學比較水箱內水的體積和水箱的容量

- 學生進行小組活動
- 學生先量度水箱內的長、潤及 高,並計算水箱的容量
- 同學再把水箱注滿水,然後把水倒入量杯中量度其體積
- 學生觀察計算及量度出之結果 的關係

- 各組同學把答案記錄讓全班同學觀察
- 同學從觀察自己及全班的數據 中推測結論
- 老師著同學解釋並作全班討論

學生進行活動時的情況如何?有沒有可改善的地方呢?

水箱	水箱內水的體積	水箱的容量
A	1238.2 cm3	1250 mL
VA	1200 cm	1200mL
✓ B	1800 cm	1800 mL
∨ B	1800 cm3	1800 mL
C	1350cm ³	1400 ml
C	1390.8 cm3	#1500mL
~D	1800 CM3 800 pm	1800mL
VD	1800 cm	1800mL

- 大部份數據相同
- 部份數據 有參差, 但亦接近
- 討論兩者 關係及誤 差原因

學生能否說出容 量和體積的關係 呢?

學生如何回應誤 差的問題?

第五组 哪個水箱的容量最大? 量度時有誤差,倒水時要加倍小心,減少 設美 量度時要量度水箱的內側 要分工与作, 取長補短, 接納他人意見 罗姆耀舉手、勞與 簽表意見 要用自己皮其他同學的數據支持自己的意見,僅 行歸納 聽、取月學的意見後、會發現自己的錯處

活動後小組進行自評

哪個水箱容量最大?

(1)實驗操作

大家沒有爭執。大家盡量把誤差減到最少。

(2)解释

我组组员利用了實驗所得出來的數據解釋。證明我想組員的看法是對的。

(3) 全班討論

组員利用自己所得出的數據與其他組的數據作比較,從而得出總,結。

活動後小組進行自評

從探究活動中建立概念

活動二

哪個水箱的水位最高?

學生明白長方體水缸的水位高度、 底面積和水的體積的關係嗎?

- 老師引入問題
- 學生先作估計並解釋原因
- 老師和同學共同討論實驗方法及注意事項
- 老師著學生記錄水的體積、水箱的 底面積及水位高度,並觀察它們的 關係

- 學生進行小組活動
- 學生量度及計算水缸的底面積
- 學生用量杯量度720mL的水,並把 之注入水缸中及觀察水位的高度

- 各組學生把結果記錄讓全班觀察
- 各組學生觀察自己及其他同學的 數據,並討論水的體積、水箱的 底面積及水位之高度的關係
- 學生在全班討論中說出及解釋推 論出的結果

學生進行活動時的情況如何?有沒有改善呢?

水箱	水的體積	水箱的底面積	水位的高度
A	720 cm ³	80 cm²	9cm
A	729cm3	80cm ² 10 cm ²	96cm6 cm
В	720(cm³)	12 O(cm²)	6(c m)
В	720cm3	120 cm ²	6 cm
C	720 cm ³	90cm2	8cm
C	720cm	90 cm	7.8 cm
D	720 cm3	120 cm²	6cm
D	720 cm ³	120 cm²	6cm

- 大部份數據相同
- 部份數據 有參差, 但亦接近
- 準確度比活動一提高
- 討論三者 關係

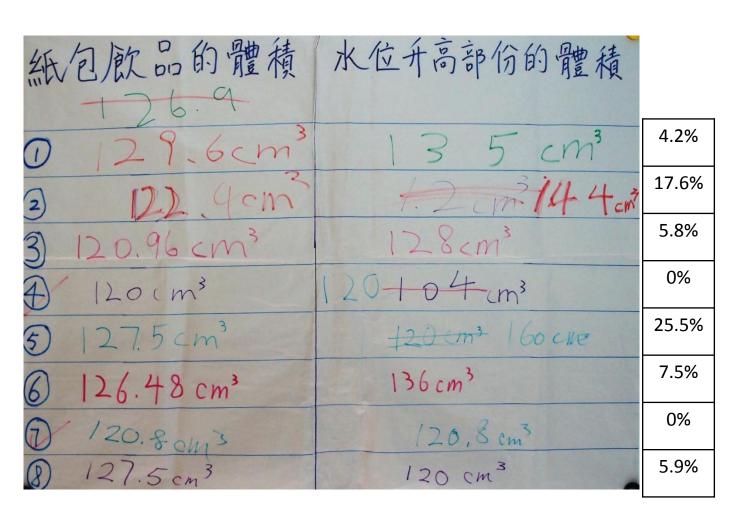
學生能否發現水的體積、水 箱的底面積和水位高度的關 係呢?

從探究活動中建立概念

活動三

升高了的水位高度所佔的體積就是立體的體積嗎?

學生是否信服用排水法求體積的原理呢?


- 老師引入問題,著學生建議如何找 出紙包飲品的體積
- 學生建議不同方法,包括量度後計算,以及把飲品放入水中,然後計算水位升高了部份的體積
- 老師著學生記錄兩個數據,並觀察 它們的關係

- 學生進行小組活動
- 學生先量度紙包飲品的長、潤及高, 並計算其體積
- 學生再把飲品放入水缸
- 學生觀察升高了水的高度,並計算 其體積

- 各組把數據記錄
- 全班同學觀察數據並進行推論
- 學生在全班討論中解釋從觀察中推 論出的結果

學生進行活動時釐清了哪些問題?

實驗結果如何呢? 組員有甚麼反應?

- · 大部份數據 相同或接近, 誤差在10% 之內
- 少部份數據 誤差較大
- 討論排水法 是否可靠
- 討論誤差問題

學生能從同學的數據中得出結論嗎?

從探究活動中建立概念

學生學會了……

- 深入理解排水法的理 念基礎
- 從實驗及分析數據中 培養求真的態度
- 反思自己進行活動時 的關注地方

從實作活動中解決問題

活動四

你能用排水法找出哪件物體的體積最大?哪件最小呢?

學生能連繫實作經驗與書本中的題目嗎?

- 老師帶出問題
- 老師展示各不規則立體,讓學生進行 估量
- 同學進行小組活動,運用排水法找出四件不同立體的體積,並找出體積最大及最小之立體的體積

- 同學把結果記錄,讓全班同學 觀察
- 老師和學生討論結果,以及檢 討進行排水法的注意事項
- 同學均表現積極及投入活動

物件	體積
萬里長城模型	第(7)組:64m 第(2)組:88 (8)组:36m3 第(1)組:64cm
	第(7)組:123.3 第(2)組:40 編第(8)組:90個 第(1)組:90個
小哥爾夫球	第(7)組: 程(5)組: 36(8)組: 48(前第(1)組: 48(前
大橙色紙鎮	第(7)組:960m 第(2)組:108 (清報(8)組:960m 第(1)組:960m

• 學生比較自己和其他同學的答案,評估自己的準確度

為甚麼學生那麼投入活動呢?

量度欠準的同學如何回應呢?

從實作活動中解決問題

活動五

用排水法能找出一粒波子的 體積嗎?

學生明白為何要多放幾粒波子嗎?要放多少粒才理想呢?

學生能從全班討論中共同 思考解決問題的方法嗎?

- 老師引入問題,並和學生討論解題 方法
- 學生進行三次活動,每次活動均使 用不同數量的波子
- 學生就結果進行全班討論

組別	放入派	皮子的方	數量	一粒波子的體積		
	第一次	第二次	第三次	第一次	第二次	第三次
第一組	8米文	门粒	40#2	2cm3	/15 cm3	2.4cm3
第二組	10	30	60		2 cm	
第三組	16	25	40	2.3	2.5	2.2
第四組	10	20	50		-	2.4 cm
第五組	8粒	16米セ	4(粒	2 cm3	1 cm3	2.4 cm3
第六組	19粒	30粒	台科	1 cm³	2 cm	1.8 cm
第七組	100	25/4	50	2.403	1.9 m	(取至小型) -15) 2.2 cm
第八組	10	55	36			\$ 16 5m

- 學生運用了不 同策略來選擇 波子的數量
- 未明顯觀察到 波子愈多答案 愈準確
- 大部份答案在 三次量度中的 數據接近

方 便 計 算

觀察刻度

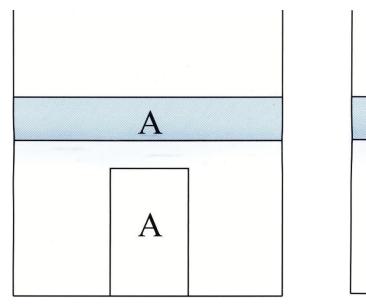
不同策略

學生選擇波子的數量時考慮過甚麼因素呢?

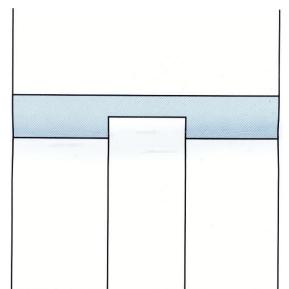
從實作活動中解決問題

學生學會了……

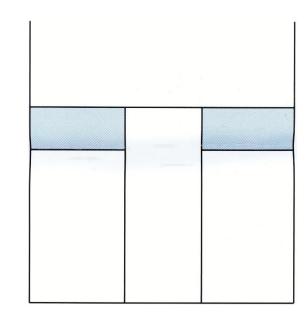
- 結合實際經驗解決有關 排水法的問題
- 探討問題時從多角度考 慮不同因素


從延伸活動中拓寬思考

活動六


如放入的物體不能完全被水 淹沒,也能運用排水法找出 體積嗎?

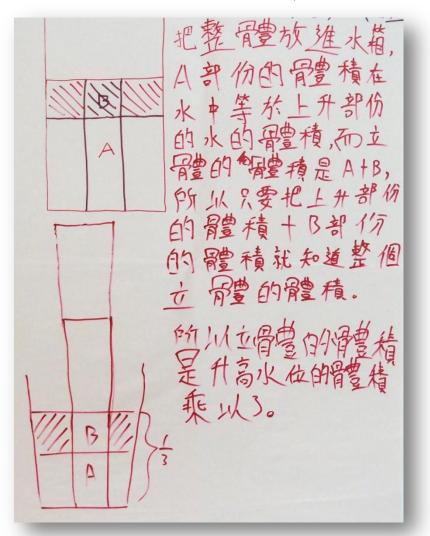
> 學生曾否挑戰過排水法的假設? 當水未能完全蓋過立體時,也 能運用排水法嗎?

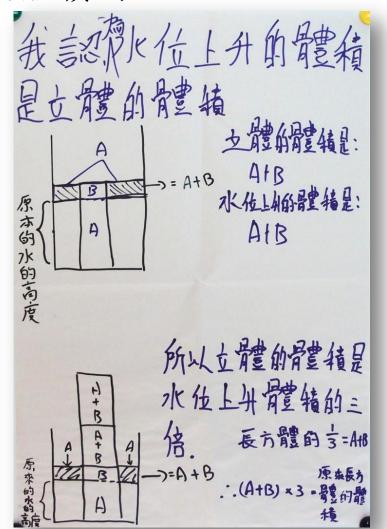

- 老師引入問題,並配以實物進行解釋
- 老師假設上升水位的體積就是立體被 淹蓋部份的體積,並推算出整件立體 的體積
- 老師從量度及計算中找出整件立體的 體積,並與之前的數據比較,估計假 設成立

情況一: 當立體未放入水前, 水位已高於立體

情況二: 當立體未放入水前, 水位是低於立體的, 但當立體放入水後, 水位則能蓋過立體

情況三: 當立體放入水後,水 位的高度和立體的高 度相等


- 老師配合圖示與學生解釋情況一
- 老師著學生從小組討論中估計情況二是 否成立,並向全班同學解釋


學生能否解釋在第二種 情況下排水法是否成立?

- 老師配合圖示與學生解釋情況二
- 老師著學生從小組討論中估計情況三是否成立,並向全班同學解釋

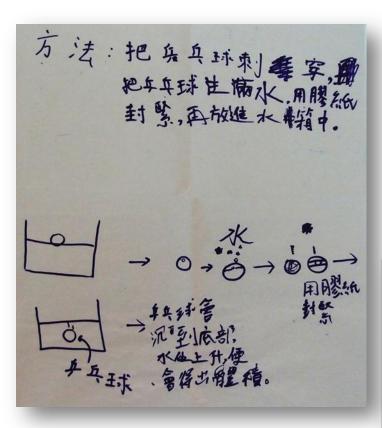
學生能否解釋在第三種情況下排水法是否成立?

- 在情況三的成立下,同學以圖畫配合 文字解答及解釋課堂中最初的問題
- 小組向全班同學解釋結果及進行討論

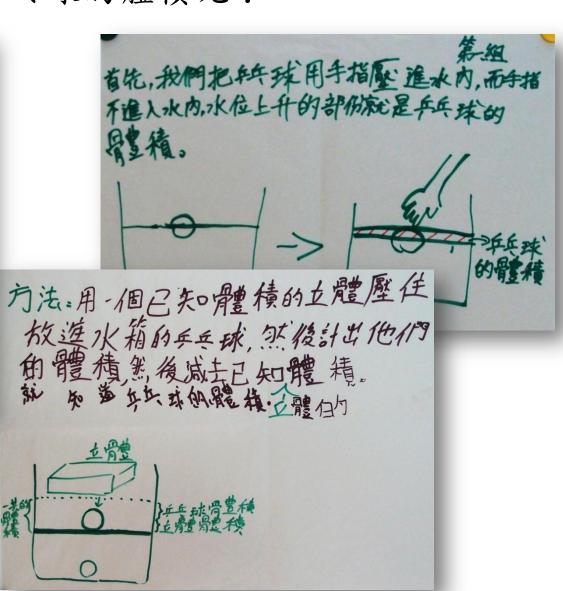
部份小組的解釋

學生明白這道解難題目的條件限制嗎?

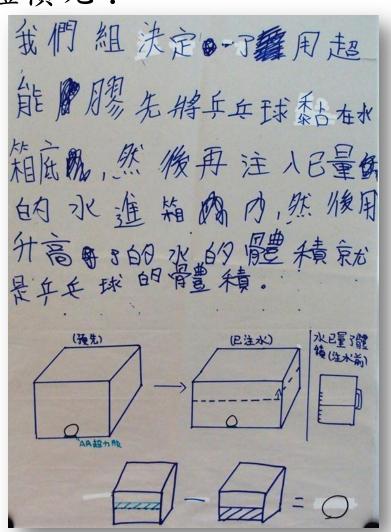
從延伸活動中拓寬思考


活動七

運用排水法是否能找出所有立體的體積呢?如何找出一個乒乓球的體積呢?


學生有否想過排水法的限制 呢?如何突破這些限制呢?

學生了解運用排水法找出立體體積的條件限制嗎?


- 老師帶出問題
- 各組嘗試構思解決方法
- 同學以圖畫配合文字進行解釋
- 各小組向全班解釋其方法,並進行全班討論
- 部份小組以實物示範其方法是否可行

部份小組的解釋

使用實驗黏着乒乓球 的底,然彼加水,最後减 太寶貼和水粉體積,京大能得到车乓球的層景稜。 知道水快车 述+宝险的體統

部份小組的解釋

從延伸活動中拓寬思考

學生學會了……

- 從了解排水法的限制中 加深對排水法的理解
- 在掌握概念後進一步發 掘問題,並嘗試思考解 決方法

排水法的教學反思

- 如何組織一個單元的學習活動 呢?
- 教數學就是教學生計數嗎?
- 在課堂中如何處理學生的不同答案及想法,從而刺激他們思考呢?

