Sharing on Pedagogy for Learning Basic Chemistry Concepts

Kwong Tsz Kin Kwun Tong Kung Lok GSS

22 June 2015

Microscopic World

Metal

Basic Chemistry Concepts

Acid and Base

Electrochemistry

Exam Question Distribution

Topic	2015	2014	2013	2012
Microscopic World	8	4	10	9
Metal	15	12	16	14
Acid and Base	16	19	16	21
Electrochemistry	18	15	15	16
Total	57	50	57	60

Which topic is the most difficult to

Teach by teachers

Learn by students

Pedagogy for chemistry T&L

Pre-lesson

Lesson

Post-lesson

Teacher

Lesson Planning

Lecturing

Quiz / Past Paper

Teaching note/ppt

Experiment

Concept Map

Teaching resources

Group Discussion

Student

Pre-study

Worksheet

Exercise

Revision

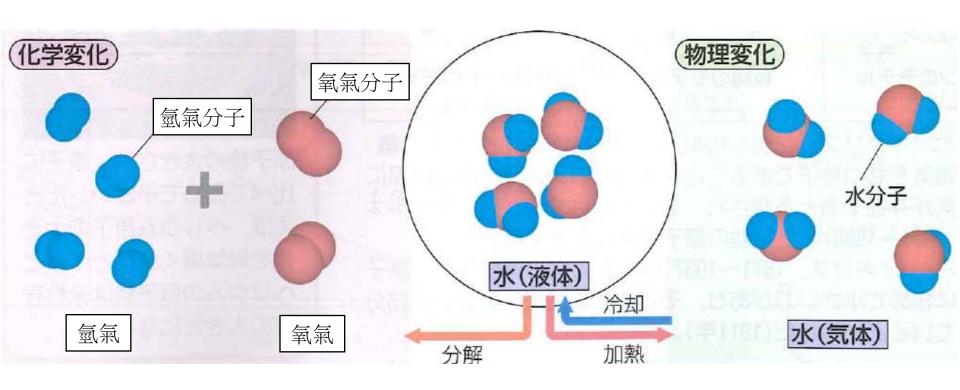
Enhancing Students learning

 Use more graphics, animations to enhance students' understanding

Physical properties

Bonding Structure of compound

Enhancing Students learning


- Chemistry is an experimental science, students are encouraged to explore the theory behind
- Use more experiments to reinforce their learning and understanding

 Use different types of activities to help different abilities students

Short experiments / demonstrations

- NSS: Limited teaching time?
- Shorten the experiment time and arrange time for the students to discuss and teacher to give feedback
- Create a gap to arouse students interests
- Make a little different from the textbook
- Problem based learning (Project)
- More real life examples

Use more graphics

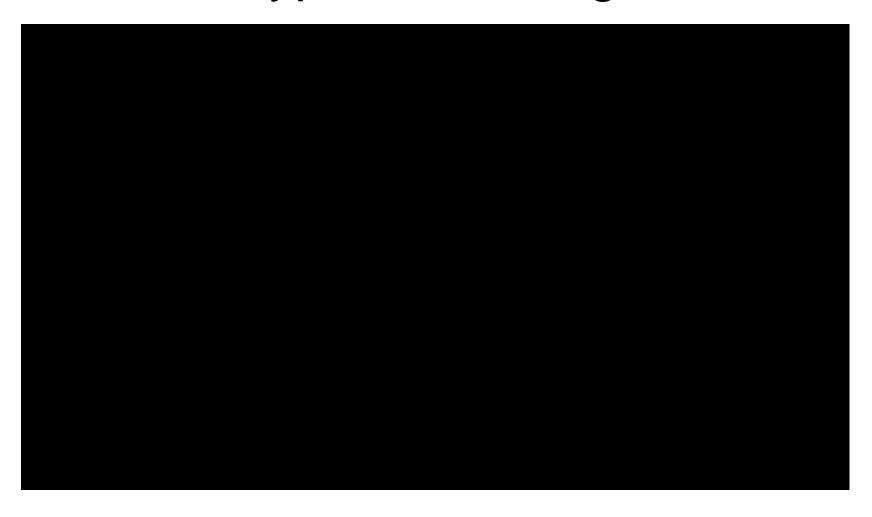
intranet discussion forum

BrittanyDanielle one year ago

Do ionic compounds conduct electricity as:

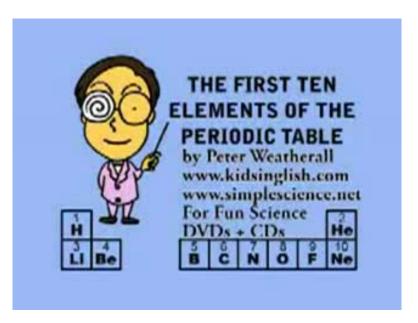
- Solids?
- Liquids?
- 3. Aqueous solutions (when the ionic compounds are dissolved in water)?

BrittanyDanielle one year ago I think it's No, Yes, Yes


thomaster one year ago

That's correct:)

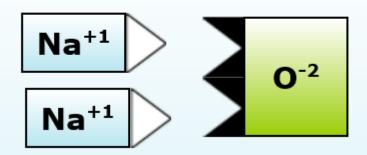
Solic ionic compounds don't conduct electricity.


In liquids and aqueous solutions, the ions are free to move and can conduct an electrical current:)

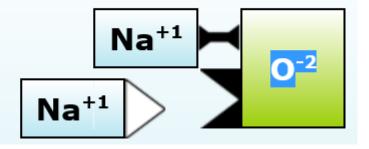
Use analogy to help understand the type of bonding

Help student to memorize the element name

Use song to improve memorization of elements in the periodic table

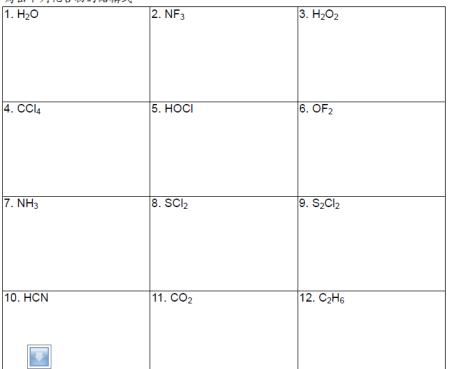


Normal speed


Slow speed

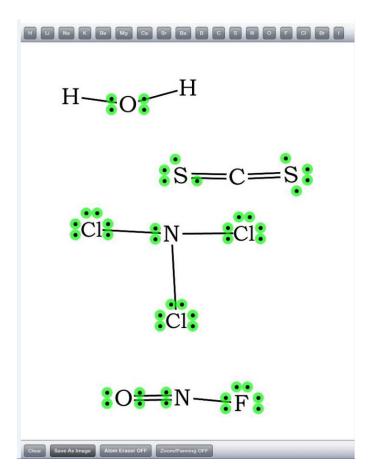
Can you make sodium oxide?

Can you make sodium oxide?


Increase motivation of learning

姓名:()中四()班	日期:

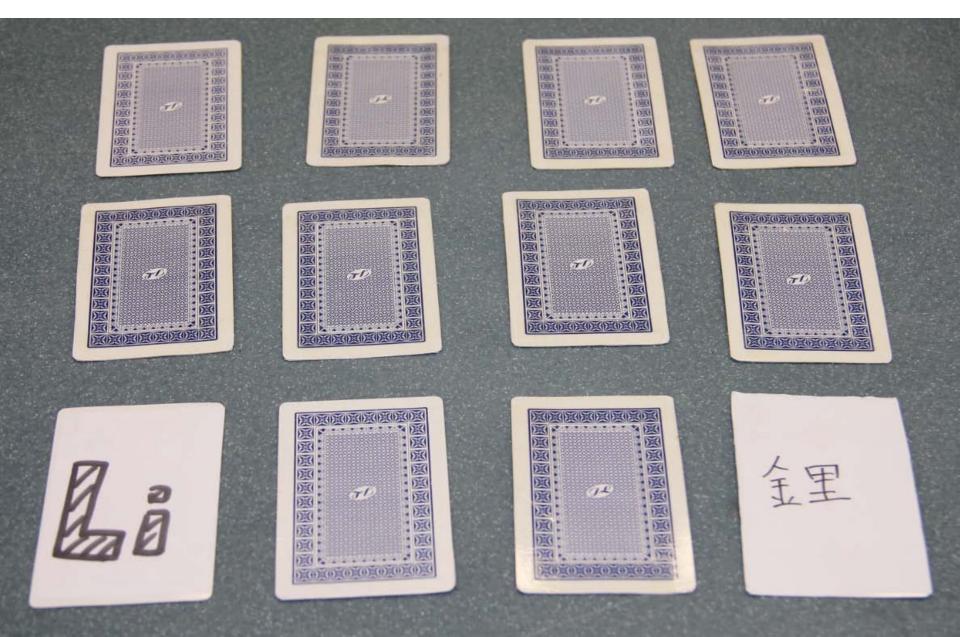
觀塘功樂官立中學 中四化學 課堂習作


課題: 化學鍵 - 共價鍵 1

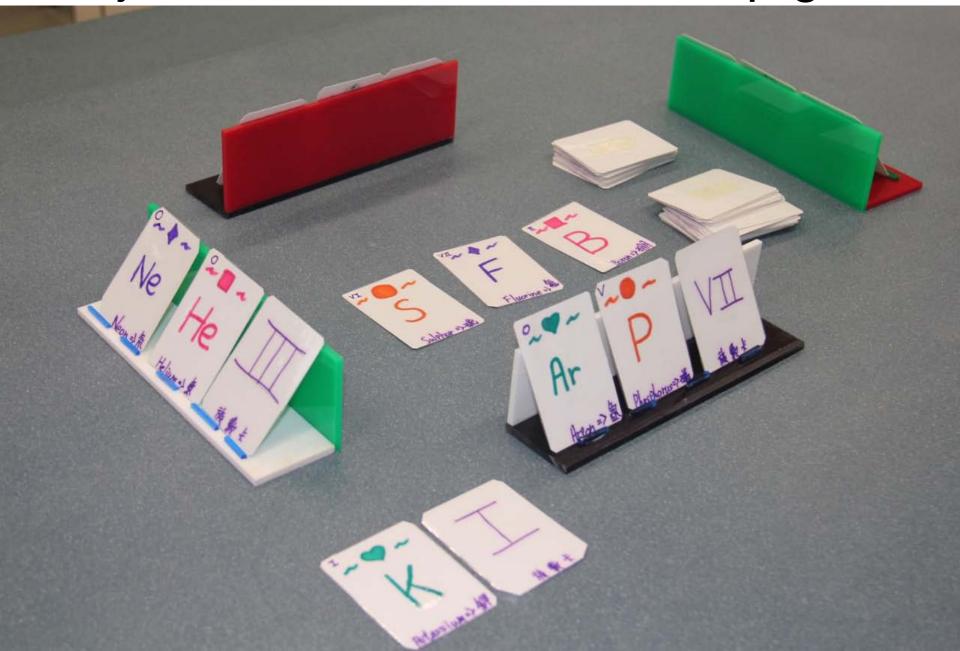
寫出下列化合物的結構式

Lewis Dots iOS free apps

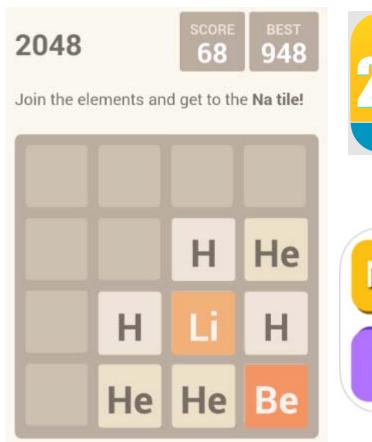
Cater for learners' Diversity Increase motivation of learning Card games



Ionic Compound Formula Game


Project work: Design their own card games

Project work: Element Memory card game



Project work: Element - Group game

Chemistry game

Use real life examples to illustrate the abstract concepts

Mass Percent

你認為下列的含金量有多少?

	999.9 金	18k金	14k金
含金百分率	99.99 %	75 %	58.3 %
1g含金量	0.9999 g	0.75 g	0.583 g

Prepare Short Video Clip for self learning Before and After Lesson

Mole concept

銀行輔幣對換

每包總值	\$ 50	\$ 20
輔幣	\$ 0.2	\$ 0.1
每包輔幣數量		

每包輔幣數量

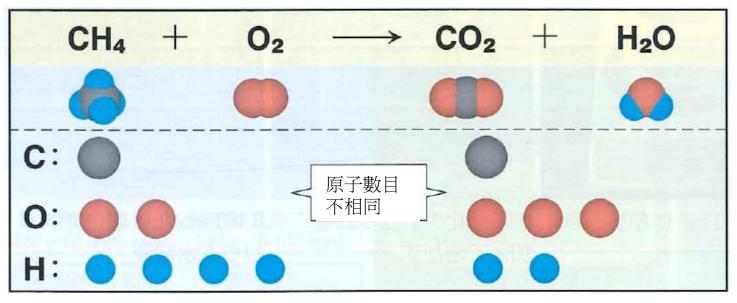
1.數法

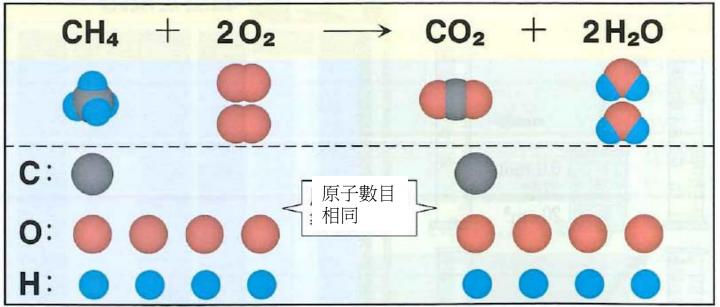
輔幣數量

每包輔幣數量 -

2.稱量法

每包輔幣質量	500 g
每個輔幣質量	2 g
輔幣數量	


Balancing a chemical reaction


$$CH_4+O_2 \rightarrow 1 CO_2+2H_2O$$

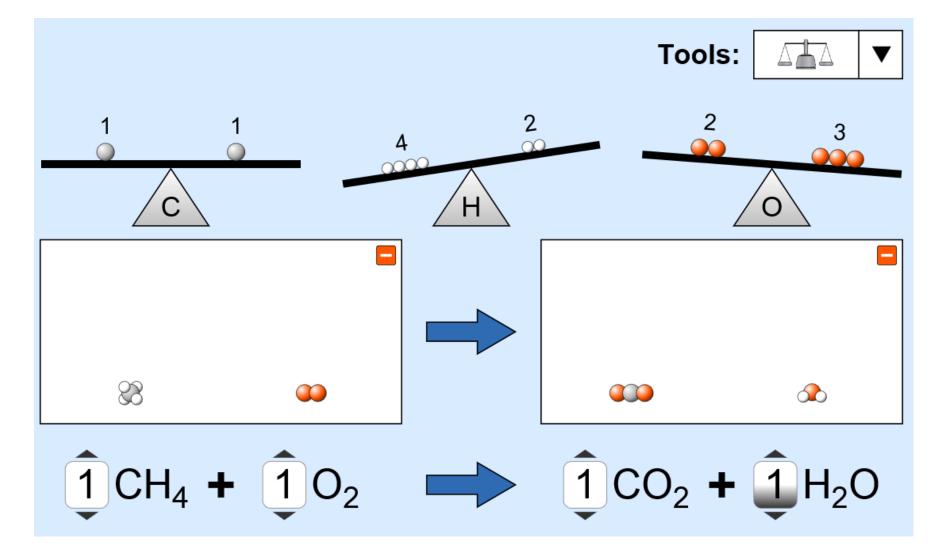
C原子 1 =1×1
H原子 4 = 2×2

$$CH_4+2O_2 \rightarrow CO_2+2H_2O$$

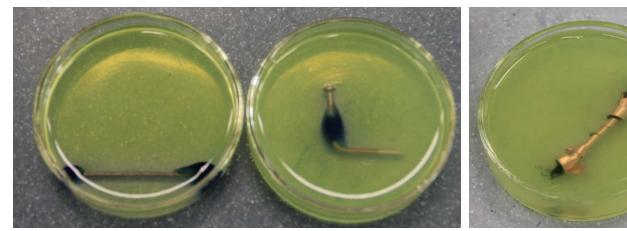
○原子 2×2 $2+2\times 1$

$$CH_4+2O_2 \rightarrow CO_2+2H_2O$$

Using graphics for balancing equations



Use mathematics to solve chemical equations


$$\alpha CH_4 + BO_2 \rightarrow cCO_2 + dH_2O$$

Improve student understanding chemical ideas

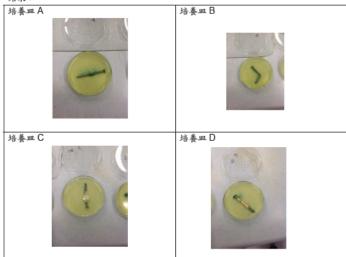
3. Stimulation

Use experiments to reinforce chemical concepts

Use ipad to help record the experimental result

视塘功樂官立中 中四化學 實驗 13.1

課題: 金屬腐蝕和保護


目的:

探究鐵鋳蝕的實驗中使用鐵鋳指示劑 (六氰合鐵(III)酸鉀) 時可見的現象及 加速鐵生鋳的因素

步驟:

- 1. 把 1 根鐵釘放入培養皿 A;
- 2. 把 1 根鐵釘屈曲後放入培養皿 B;
- 3. 把 1 根鐵釘以鎂帶包裹,並放入培養皿 C;
- 4. 把 1 根鐵釘以銅片包裹,並放入培養皿 D;
- 5. 把含有鐵鋳指示劑的膠凝液分别倒進培養皿 A-D;
- 6. 靜置培養皿 30 分鐘並觀察培養皿内鐵釘的顏色變化。

結果:

結論:

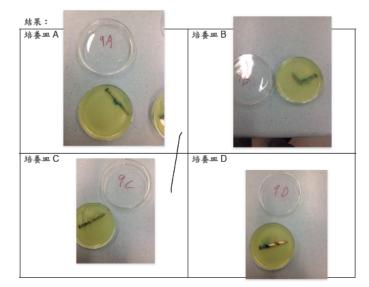
- 鐵銹在<u>樂曲</u>較容易進行。

()中四()班

ा संस ह

视塘功樂官立中學

中四化學 實验 13.1

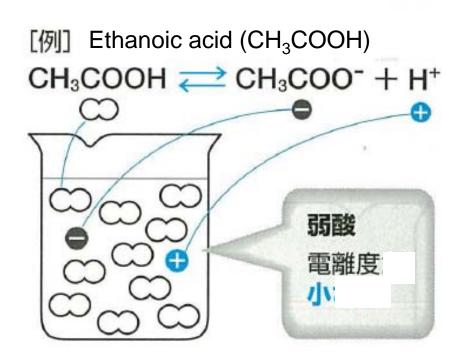

課題: 金屬腐蝕和保護

目的:

探究鐵銹蝕的實驗中使用鐵銹指示劑 (六氰合鐵(III)酸鉀) 時可見的現象及 加速鐵生銹的因素

步驟:

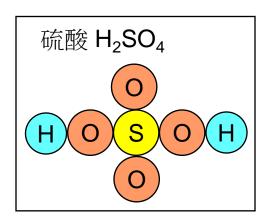
- 1. 把 1 根鐵釘放入培養皿 A;
- 2. 把 1 根鐵釘屈曲後放入培養皿 B;
- 3. 把 1 根鐵釘以鎂帶包裹,並放入培養皿 C;
- 4. 把 1 根鐵釘以銅片包裹,並放入培養皿 D;
- 5. 把含有鐵鋳指示劑的膠凝液分别倒進培養皿 A-D;
- 6. 靜置培養皿 30 分鐘並觀察培養皿内鐵釘的顏色變化。


結論:

- 2. 鐵與活潑性較______的金屬更容易使鐵生銹。

3. Acid and base

Use graphic to illustrate degree of acid ionization



Use experiment to calculate the mass loss and stiochiometry of calcium carbonate and acid

pH標度計算,你需要

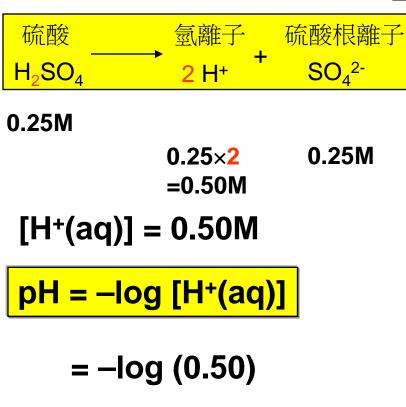
 $\frac{\text{硫酸}}{\text{H}_2\text{SO}_4}$ \longrightarrow $\frac{\text{氫離子}}{2\text{ H}^+}$ + $\frac{\text{硫酸根離子}}{\text{SO}_4^{2-}}$

化學式

電離方程式

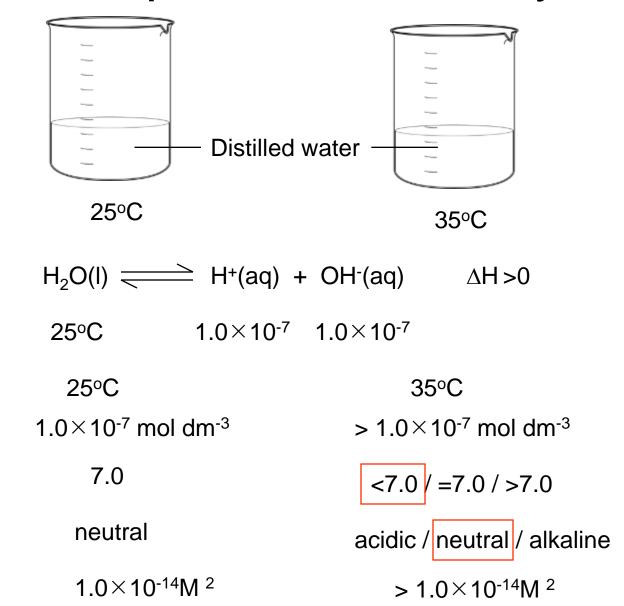
電離率

鹽基度


計算機

$$pH = -log [H^+(aq)]$$

$$[H^{+}(aq)] = 10^{-pH}$$

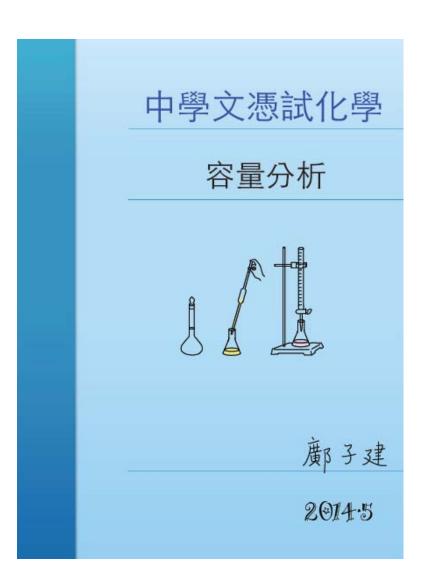

pH標度計算

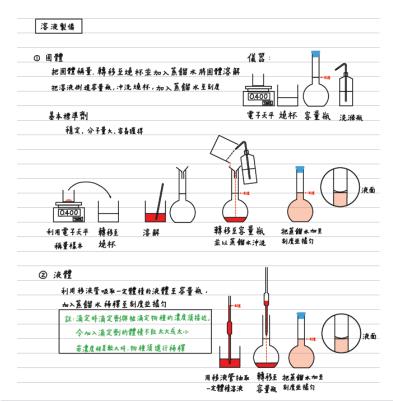
2. 計算0.25M硫酸(H₂SO₄)的pH值。

= 0.30

Misconception in chemistry L&T

H⁺(aq)


Solution


 K_{w}

pН

Prepare student revision notes

/生 型

名稱	容量瓶	移液管	滴定管	錐形瓶	燒杯
_			9		
圖示					
	一刻度	(a)			
	250 cm³		1		
用途	溶液稀釋及製備	轉移溶液	滴定溶液	盛载滴定溶液	盛载溶液
量度體積	250.0 cm ³	25.0 cm ³	0.00 - 50.00 cm ³	-	_
準確性	準確	準確	準確	不準確	不準確
使用前清洗	蒸餾水	蒸餾水+	蒸餾水+	蒸餾水	蒸餾水+
		咸载溶液	盛载溶液		盛載溶液

Project work

Group Work – collaborative learning higher ability students take care of lower ability students

Analysis of ethanoic acid content in vinegar by acid base titration

Relative cleansing power of different brand of vinegar

End of project

觀塘功樂官立中學 中四化學科專題研習

用酸鹼滴定來測定醋內乙酸的摩爾濃度

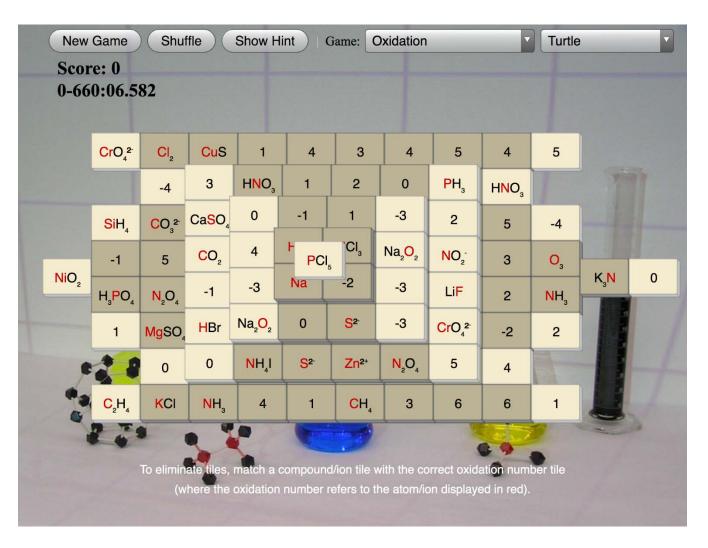
2015年5月

P.1

Project Presentation

Use table to summarize the Common oxidation state (metal)

常見元素的氧化數總結

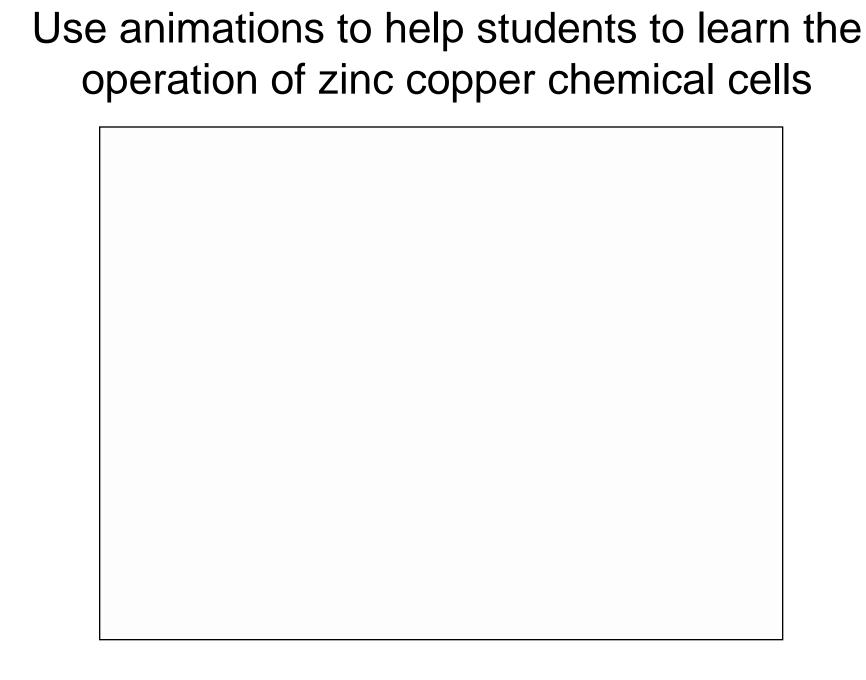

金屬											
元素	第1族	第Ⅱ族	第Ⅲ族	釠	鉻	錳	鐵	鈷	鎳	鉬	鋅
氧化數 物種				v	Cr	Mn	Fe	Co	Ni	Cu	Zn
+7						MnO ₄					
+6					CrO4 . Cr2O7	Mn 04					
+5				VO3 . VO2							
+4				VO ²⁺		MnO ₂			NiO₂		
+3			M ³⁺	√³+	Cr ^{3†}		Fe³+	C₀ * *			
+2		M ²⁺		V ²⁺		Mn ²⁺	Fe ²⁺	Co²⁺	Ni ²⁺	Cu ²⁺	Z∩²⁺
+1	M ⁺									Cu⁺	
0	м	М	М	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
-1											
-2											
-3											
4											

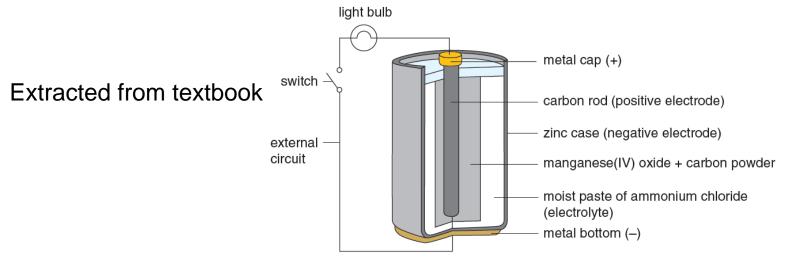
Use table to summarize the Common oxidation state (non-metal)

非	金	屬
---	---	---

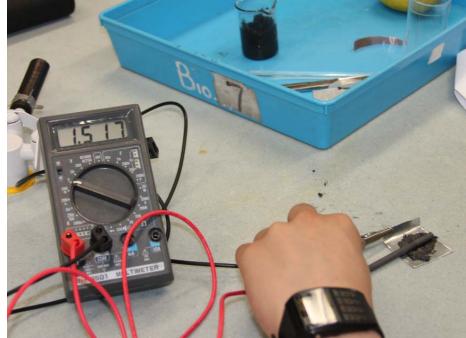
元素	碳	矽	氪	磷	氧	硫	氟	氯.溴.碘	氫
氧化數 物種	С	Si	N	Р	0	S	F	Cl Br I	Н
+7						S₂O ₈ ²-		CLO4	
+6						SO ₄ , so ₃			
+5			NO ₃	PO ₄ 3-				CLO3	
+4	CO ₂ , CO ₃ -, HCO ₃ -	SiO₂	NO _z			SO3 · SO2			
+3	C ₂ O ₄ ²⁻		NO ₂	PO ₃ ³⁻				C20 <u>-</u>	
+2	со		NO			S ₂ O ₃ ²⁻			
+1			N₂O					ClO-	H⁺
o	C(石墨、金剛石)	Si	N ₂	P ₄	O ₂ . O ₃	S ₈	F ₂	Cl ₂	H ₂
-1					H ₂ O ₂		F,HF	C£,HC£	H ⁻
-2					O²⁻、H₂O	S²⁻. H₂S			
-3			NH ₃ , NH ₄ ⁺	PH ₃					
-4	CH₄								

Oxidation number Game





Mahjong Chem
By Stetson University Academics



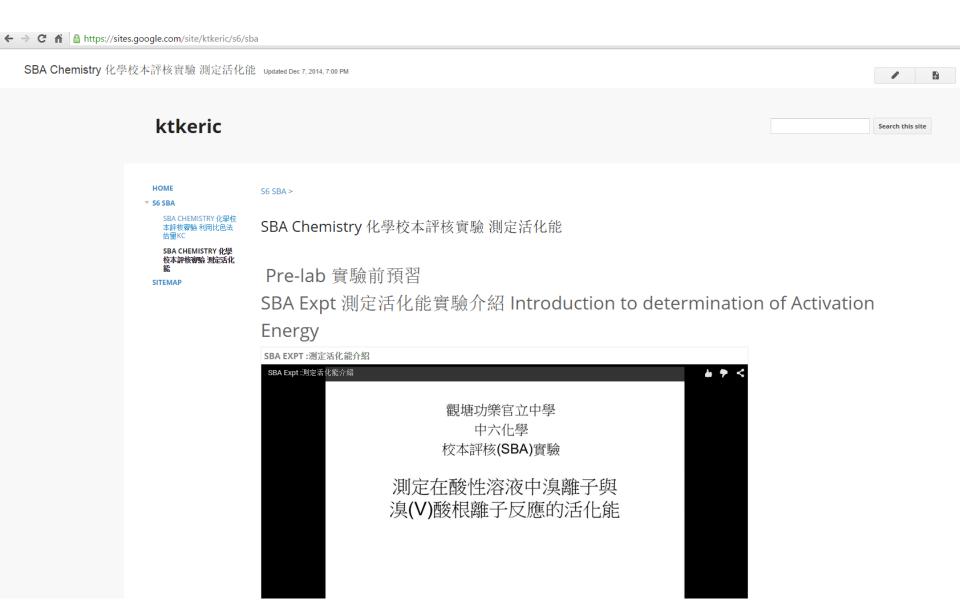
Experiment: Making zinc carbon cells

Project work 香港青少年科技創新大賽

2013-14 化學及材料(高中) 優異獎

Use TV clip for explanation of electrochemistry

2006.10.28 - 神奇排毒機


播出日期: 2006.10.28 (六)

香港市面出現一種足浴離子排毒機,美容院、地鐵站、百貨公司、街市都有售。開機浸腳,三十分鐘後水會變色,據說這便是排了毒,不同病患者排出的毒素,色澤不同。原來這是一個騙局,記者以科學方法,破解內裡乾坤。

《新聞誘視—神奇排毒機》獲2007消費權益新聞報道獎—電視組別銅獎。

Other

Pre-lab and post lab video

Exam skills - Annotated pdf

- 6. 把 50.0 cm³ 的 0.6 M FeSO₄(aq) 和 150.0 cm³ 的 0.2 M Fe₂(SO₄)₃(aq) 混合。所得混合物中 SO_4^{2-} (aq) 離子的濃度是多少? $FeSO_4 \rightarrow Fe^2 + SO_4^{2-}$ + $Fe_2(SO_4)_3 \rightarrow 2Fe^{3+} + 3SO_4^{2-}$
 - A. 0.3 M B. 0.4 M
 - C. 0.6 M D. 0.8 M
- 50.0cm³ 混合前 0.6 M 混合後 <u>50</u>×0.6 =0.15M
- 0.2 M 150 200 × 0.2 = 0.15 M
- 0.15M×3
- $[SO_4^{2-}] = 0.15 + 0.45 = 0.60 \text{ M}$
- 7. 下列哪對水溶液在混合後會具有最低的導電性?
 - A. 20.0 cm^3 的 0.1 M HNO_3 和 20.0 cm^3 的 0.1 M KOH HNO₃ + KOH \rightarrow KNO_{3 (ag)} + H₂O_(L)
 - B. 20.0 cm³ 的 0.1 M H₂SO₄ 和 20.0 cm³ 的 0.1 M Ba(OH)₂ H₂SO₄ + Ba(OH)₂ → BaSO₄ (s) +2 H₂O(x)
 - C. 20.0 cm³ 的 0.1 M CH₃COOH 和 20.0 cm³ 的 0.1 M NH₃ CH₃COOH + NH₃→CH₃COONH_{4(ap)} {CH₃COO⁻</sup>
 - D. 20.0 cm³ 的 0.1 M HCl 和 20.0 cm³ 的 0.1 M C₆H₁₂O₆(葡萄糖) HClop (H^{*} NH)
- 9. 在某些條件下,三個反應的焓變如下所示:

$$\begin{array}{ccc}
& & & & & & & \\
B_2H_6(g) + & 3 O_2(g) & \longrightarrow & B_2O_3(s) + 3H_2O(l)
\end{array}$$

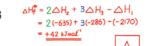
$$B(s) + \frac{3}{4} O_2(g) & \longrightarrow & \frac{1}{2} B_2O_3(s)$$

$$H_2(g) + \frac{1}{2} O_2(g) & \longrightarrow & H_2O(l)$$

焓變

△H, -2170 kJ mol⁻¹

△H₂ -635 kJ mol⁻¹


 $\triangle H_3$ -286 kJ mol^{-1}

~從其成分元素

下列哪項是 B₂H₆(g) 在相同條件下的生成焓變?

- A. +42 kJ mol⁻¹ B. +614 kJ mol⁻¹
- C. +677 kJ mol⁻¹
- D. $+1249 \text{ kJ mol}^{-1}$

 $\begin{array}{c|c} 2B_{(5)} + 3H_{2(g)} \xrightarrow{\Delta H_{2}^{p}} B_{2}H_{6(g)} \\ + \frac{3}{2}Q_{1} + \frac{3}{2}Q_{3} \xrightarrow{\Delta} H_{3} + 3Q_{2} \xrightarrow{\Delta} H_{1} \\ 2\triangle H_{2} & B_{3}Q_{3(5)} + 3H_{2}Q_{10} \end{array}$

End of topic quiz Socrative - Student Response System

Socrative Teacher

View More by This Developer

By Socrative

Open iTunes to buy and download apps.

Description

SOCRATIVE 2.0

Engage, assess and personalize your class with Socrative.

Educators can initiate formative assessments through quizzes, quick question polls, exit tickets and space races all

Socrative Web Site > Socrative Teacher Support >

More

What's New in Version 2.0

Can add photo and superscript and subscript in the question

End of quiz in class

Group discussion and collaborative learning among students

Individual quiz for concept checking in each topic

Socrative by MasteryConnect

Quiz name: 酸的反應 Date: 03/20/2015 Name: 何梓逸 Date: 03/20/2015 Question with Most Correct Answers: #7 Total Questions: 8 Quiz name: 酸的反應 Score: 88% Ouestion with Fewest Correct Answers: #3 下列哪項不是稀氫氯酸的一般性質? 1. 下列哪項不是稀氫氯酸的一般性質? 它可導電。 它可導電。 它帶有酸味。 (B) 2/17 它帶有酸味。 它把紅色石蕊試紙變為藍色。 它把紅色石蕊試紙變為藍色。 它與鎂反應,釋出氫。 (D) 它與鎂反應,釋出氫。 下列哪種物質與稀氫氯酸反應會釋出一種氣體? 2. 下列哪種物質與稀氫氯酸反應會釋出一種氣體? 氧化鐵(II) 氫氧化鉀 氧化鐵(Ⅱ) 下列哪種物質不會與稀氫氯酸反應? 氫氧化鉀 氯化鎂 氫氧化銅(II) 硝酸銀溶液 3. 下列哪種物質不會與稀氫氯酸反應? 碳酸氫鈉 氯化鎂 (B) 下列哪種金屬可用來製造盛載稀硫酸的容器? 氫氧化銅(II) 硝酸銀溶液 碳酸氫鈉

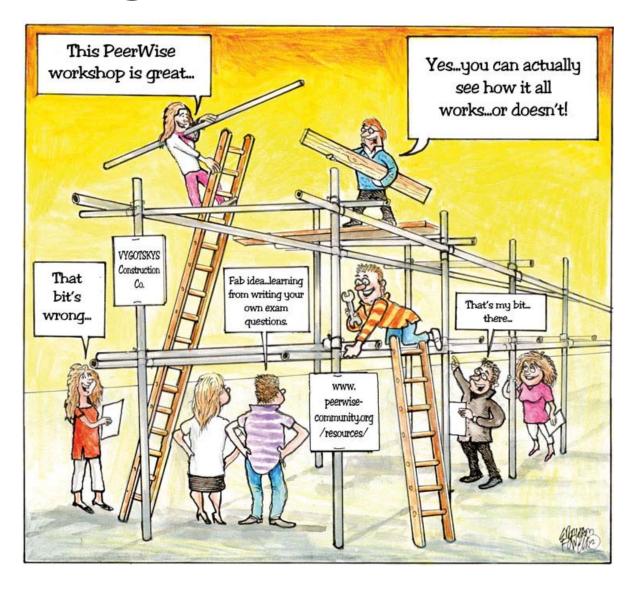
Overall Student Report

下列哪種金屬可用來製造盛載稀硫酸的容器?

Individual Student Report

5	Common Core Tags:						
6							
		Total	Number of		下列哪種物質與稀氫		下列哪種金屬可用來
		Score (0 -	correct	下列哪項不是稀氫氯	氯酸反應會釋出一種	下列哪種物質不會與	製造盛載稀硫酸的容
7	Student Names	100)	answers	酸的一般性質?	氣體?	稀氫氯酸反應?	器?
8		25	2		銅		銅
9		13	1	它可導電。	氫氧化鉀	氫氧化銅(Ⅱ)	鋅
10		13	1	它可導電。	氫氧化鉀	氫氧化銅(Ⅱ)	銅
				它把紅色石蕊試紙變			
11		88	7	為藍色。	銅	氯化鎂	銅
				它與鎂反應,釋出氫			
12		25	2	٥	氫氧化鉀	氯化鎂	鎂
				它把紅色石蕊試紙變			
13		50	4	為藍色。	鋅	硝酸銀溶液	鐵
				它與鎂反應,釋出氫			
14		25	2	۰	氫氧化鉀	硝酸銀溶液	鋅
				它把紅色石蕊試紙變			
15		88	7	為藍色。	鋅	氫氧化銅(Ⅱ)	銅
				它與鎂反應,釋出氫			
16		13	1			氫氧化銅(Ⅱ)	鐵
				它與鎂反應,釋出氫			
17		0	0	0	氧化鐵(II)	硝酸銀溶液	鋅
				它把紅色石蕊試紙變			
18		63	5	為藍色。	鋅	氫氧化銅(Ⅱ)	銅

Excel Statistics


1 酸的反應

4

з Room: 608074

² Friday, March 20 2015 11:29 AM

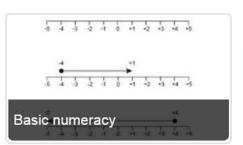
Student-generated assessment

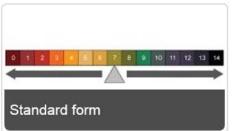
Teaching mathematical skills in chemistry

So, does this mean that 10% is, 10 out of every 100 and 20% is 20 out of every 100? Can you recommend a good experiment for teaching percentage yield in the classroom?

http://discovermaths.rsc.org/

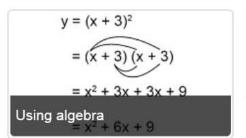
making video in internet for flipped classroom (e-learning)

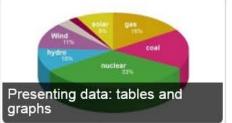


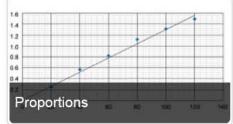


CPD for Teachers

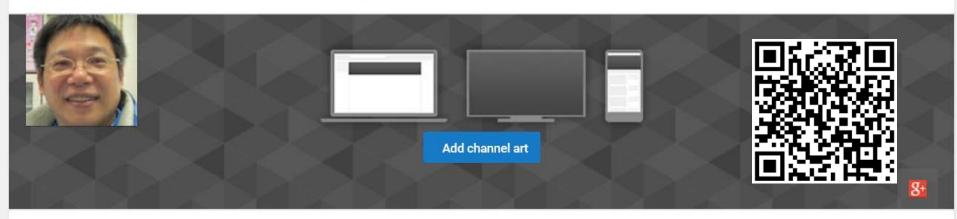
Advancing excellence in chemistry teaching


Course topics





Useful Resources



61 subscribers

111 5,656 views

Video Manager

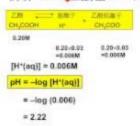
Kwong Eric View as: Yourself -

Home

Videos

Playlists

Channels


Discussion

About

Q

P . . 101/20 11 7T

乙酸在30°C的電離率為3.0%,計算0.20M乙酸在30°C的pH值。

6:05

pH計算及量度

by Kwong Eric

2 months ago • 21 views

pH計算及量度

量度pH

by Kwong Eric 2 months ago · 14 views 此視訊關於量度pH

End of Presentation

Thank you!!

Contact:

Kwong Tsz Kin ktk@ktklgss.edu.hk

(O)2343 5059

90 Kung Lok Road, Kwun Tong, Kowloon