Using Mobile Applications and Custommade Devices for conducting Chemistry Practical Tasks

Science Education Section, CDI Education Bureau

Experiment 4B Determination of Ethanol Content in a Beverage (using custom-made LED colorimeter)

- Preparation of colouring reagent, ethanol standard solutions, and the wine sample
 - Refer to Part B of Experiment 4A
- Construction of custom-made LED colorimeter
- Measurements of absorbance of standard solutions and the sample

Custom-made LED colorimeter

Equipment and materials:

- Red LED (light source)
- Infra-red (IR) LED (light detector)
- Digital multimeter
- 3V button cell (e.g. CR2032)
- Connecting wires
- Blu-tack
- Custom-made cuvette holder

Construction of LED colorimeter

Red LED (light source)

(light detector)

Measurement of Absorbance

Blank solution

- 2/3 fill the plastic cuvette with blank solution (i.e. acidified K₂Cr₂O₇ (aq))
- Place the cuvette in the compartment of the cuvette holder, measure and record the voltage reading on the multimeter.
- Standard and sample solutions
 - Repeat the measurement procedure by replacing blank solution with standard / sample solution in turn.

Results (9/6/2021)

• Complete the following table:

$$A = \log (I_0 / I) = \log (V_0 / V)$$

	Blank	Standard so	Sample			
		5%	10%	15%	20%	solution
Voltage measured / volt	0.087 (V ₀)	0.063 (V ₀₅)	0.048 (V ₁₀)	0.036 (V ₁₅)	0.027 (V ₂₀)	0.039 (V _s)
Absorbance (A)		0.140	0.258	0.383	0.508	0.348

Results

- Plot a calibration curve (A vs c) below. Since A \propto c, a straight line is expected.
- Determine the concentration of the alcohol in the beverage sample from the calibration curve.

Spreadsheet for checking

	A	В	С	D	E	F
1	Concentration of alcohol (%)	Voltage (V)		$Log(V_0/V)$		
2	0	0.87	Blank ($K_2Cr_2O_7/H^+$)			
3	5	0.63		0.1402		
4	10	0.48		0.2583		
5	15	0.36		0.3832		
6	20	0.27		0.5082		
7						
8	1. Recorded voltages					For equation
0	of standard solution					Concentrat
9						
10	Sample	0.39		0.3485		13.54694
11						
12	2. Recorded voltage					
13	of the wine sample					
14						

Analysis of the given wine sample

- Sample provided: diluted maotai with alcohol concentration = 13.3% (Original labelled alcohol content = 40%)
- Measured voltage = 0.039 V
- Absorbance of the sample solution = 0.348
- Measured alcohol content % of the sample = **13.5%**

Remarks:

- Brightness of the light source should be adjusted so that the measurements falls into the linear range of the custom-made colorimeter (Beer-Lambert Law).
- Using a stable power supply for the light course is preferred.
- Complementary colour the use of different LEDs as light source allows the measurement of light intensity of different colours.
- IR LED can be used to detect visible light and Red LED can be used as a light source

Beer-Lambert Law (for teacher's reference only)

• A = log (I₀ / I_s) = $\epsilon l c$

 ϵ = molar absorptivity

- 1. Further reading
- Eating with Your Eyes: The Chemistry of Food Colorings -American Chemical Society (acs.org)

Concepts:

Chemical structures, functional groups, intermolecular forces, solubility, absorbance & transmittance of colour dye

Discussion based on the concepts in the reading:

1. Identify the functional groups of sunset yellow and tartrazine.

2. Accounts for the solubility of sunset yellow and tartrazine in water in terms of intermolecular forces/ ionic bonding.

- 1. Further reading
- <u>食物中的染色料 (cfs.gov.hk)</u>
- 2. Video on abuse use of food colourant on bigeye fish
- https://youtu.be/3HLn517ppbU

Concepts:

colour fading / loss due to exposure to light, air, extremes of temperature and moisture, safety issue

Discussion:

- 1. As mentioned in the article and video, what is the safety issue of the misuse/ abuse of food colourant?
- 2. According to the video, how does the scientist identify the colour dye?
- 3. What should we do to avoid consuming abusively added food colourants?