Demonstration

Detection the presence of alcohol vapour using Arduino

20170211_ 蘋果日報_Mini Cooper窩打老道炒欄 司機涉醉駕

酒精呼氣測試機

Types of alcohol sensor

1. Chemical Test

2. Intoxilyzer 氣息分析器 - Infrared sensor

Diagram of the Intoxilyzer

- Quartz lamp (IR source)
- Breath input
- Breath outlet
- Sample chamber

- Lenses
- Filter wheel
- Compare the com
- Microprocessor

3. Breathyler - Fuel Cell Sensor

When the user exhales into a breath analyzer

At the anode, any ethanol present in their breath is oxidized to acetic acid:

$$CH_3CH_2OH(g) + H_2O(I) \rightarrow CH_3CO_2H(I) + 4H^+(aq) + 4e^-$$

At the cathode, atmospheric oxygen is reduced:

$$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$$

The overall reaction:

$$CH_3CH_2OH(I) + O_2(g) \rightarrow CH_3COOH(I) + H_2O(I)$$

The electrical current produced by this reaction is measured by a microprocessor, and displayed as an approximation of overall blood alcohol content (BAC) by the Alcosensor.

4. Breathyler - Semiconductor sensor

Semiconductor sensor (MQ-3)

D. Structure and configuration, basic measuring circuit

sensor composed by micro Al₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net.

Sensitive material of MQ-3 gas sensor is SnO₂, which with lower conductivity in clean air. When the target alcohol gas exist, The sensor's conductivity is more higher along with the gas concentration rising.

In this demonstration, an arduino alcohol system was developed.

Example: Alcohol Detection

Human Language

Initialize some integer variables to store data like pin number and sensor value

Setup the system

- Set the communication rate between sensor and our computer
- Set pins as power output

Repeat the loop again and again,

Read sensor value from Ao pin, print the sensor value at the Serial monitor

An If-else logic decision,

If sensor value is smaller than 120, turn on LED_1

Else turn on LED_2

Loop again

Ardunio Codes

```
int AOUTpin = A0;
int sensor value = 0;
int LED 1 = 10;
int LED 2 = 11;
void setup() {
Serial.begin(9600);
pinMode(LED_1, OUTPUT);
pinMode(LED 2, OUTPUT);
void loop() {
sensor_value = analogRead(AOUTpin);
Serial.print("Recorded value: ");
Serial.println(sensor_value);
if(sensor value < 120){
digitalWrite(LED 1, HIGH);
digitalWrite(LED_2, LOW);
else{
digitalWrite(LED 1, LOW);
digitalWrite(LED 2, HIGH); }
```


if (sensor_value < 120) {digitalWrite(LED_1, HIGH); digitalWrite(LED_2, LOW)}
else</pre>

{digitalWrite(LED_1, LOW); digitalWrite(LED_2, HIGH)}

http://www.learningaboutelectronics.com/Articles/MQ-3-alcohol-sensor-circuit-with-arduino.php

The MQ-3 sensor takes about 3~4 minutes to give a smooth background reading according to our experience

Demonstration

Breathlyzer - 2 LEDs alcohol arduino system

https://www.youtube.com/watch?v=Ac6nOvpjegY

Enhancement of the system

Measurement of Alcohol Level in breath with OLED display

Measurement of Alcohol Level in alcoholic beverages

