
P2 
 

 
 
 

Project report: 
 the apple chess 

program 



P2 
 

The Objective 
 

I have been chosen to create a program of a well-known chess game, the 
Apple Chess, also known as the Othello game. According to the 
instructions I got from my teacher, I need to create an Othello game that: 

a.) Accepts two human players at a time, 
b.) Design a proper user interface, 
c.) Obeys the official rules of the game. 



P2 
 

The Analysis 
 

To accomplish the objectives I have mentioned, I must first learn 
to play the Othello game. From a several Internet web pages, I 
obtained the rules of the game. The following is a list of the rules. 
 
1.) Black always plays first. 
2.) The Othello chessboard must be an 8x8 square board. 
3.) Flipping goes in eight different directions: horizontal, vertical, and 
diagonal. When a disc is placed in a certain position, it flips all of the 
opponent’s disc in all direction until it reaches it’s another disc of its own 
colour. 
4.) Flipping of a disc must result in direct effect of a move, that means the 
flipped disc in one move will not flip the other discs around it. 
5.) A legal move must satisfy two conditions:  
i.) The move is on a position where no disc has been put on 
ii.) The move can flip at least one of the opponent’s discs 
6.) Every move must be a legal move 
 
7.) If no legal move is available for a player, that player must pass the game 
to the other opponent. 
8.) Game ends in either condition: 
i.) If no legal move is available for both players, it is a draw game. 
ii.) All positions are occupied. 
 

It is clear that all of the above rules but be carefully 
implemented into my program to ensure a good user experience.



P2 
 

The Design 

 
The design of the program is simple, as I have mentioned earlier, 
an Othello game uses an 8 by 8 chessboard, to the users 
convenience, there must be some kind of an index system. After 
referring to some common chessboards, I decided that the 
interface should look like this: 
 

 A B C D E F G H 
1         
2         
3    *     
4    O X    
5    X O    
6         
7         
8         

 
# where X denotes black discs and O denotes white. 

 
Using this system, the program will prompt the user for moves 
using this index. For instance, if the user would like to place a 
disc on the * position, the user can enter D3. 



P2 
 

Implementation 
 

Choosing the Right Language 
To realize the design, I must choose a media and a 

programming language that is suitable for this project. Here is 
the list of some possible solutions. 

           
Programming 
Language 

Media Software Platform 

C Console Any text editor Any platform that has a C/C++ 
complier 

Console Any text editor Any platform that has a C++ 
complier 

C++ 

GUI Any text editor / Visual C++ Win16/Win32 
Basic GUI Visual Basic Win16/Win32 
Perl Console Any text editor Any platform that has a Perl 

interpreter. 
 
To decide which programming language and media to use, I have 
thought of the benefits and drawbacks on using those mentioned 
above. 
 
Programming Language Advantages Disadvantages 
C Extremely portable Comes with fewer functions than 

C++ 
Console Extremely portable Takes longer time to master C++  
GUI Enhance user Experience Takes even longer time to 

master / poor portability 
Visual Basic Easy to program Poor portability 
Perl Easy to program Execution time is longer 

because perl programs runs 
through interpreters 

 
At first, I was going to make this program using Visual C++. 
However, because I don’t know much about C++ and designing 
programs with a GUI under the windows environment, so I gave 
up this thought and turn to Perl, but Perl programs are not fast 
enough because it is interpreted by its interpreter, instead of 
compiling. 
 
So, at the end, I chose to program in C because it takes less 
time to learn, it has a tremendous amount of documents on the 
Internet, and it will allow the program to become extremely 
portable. 



P2 
 

The development platform 
At first, I tried to work with Dev-C++ on windows, but it often 
generates error messages and failed to compile because some 
include files were missing. As my teacher provided me with 
another option, that is Linux, I eventually developed my program 
on it, using its text editors and C compliers which come with 
most distributions. I found that it was quite a good platform to 
work on because it can be accessed through the internet with ssh 
or telnet; it is free and robust; and it has many documentations 
on how things could be used. 



P2 
 

Array Indexes 

Storing the data 
It is obvious that the right place to store the chessboard is a two-dimensional 
array. Since array indexes in C starts from 0 (as illustrated below), I need to 
convert the incoming user input to what C understands. For instance, when 
the user inputs D3, I need to tell the program that it means 2,3 in the array. 
 
 
 
 

 A B C D E F G H  
1         0 
2         1 
3    *     2 
4    O X    3 
5    X O    4 
6         5 
7         6 
8         7 
 0 1 2 3 4 5 6 7  

 
 
 
 
So I wrote the function alpha2num() in the program to convert the column 
indexes back into the array index. Of course, I would have to initialize the 
array first before I could do anything. 
 
The Flipping 
At first glance, the flipping business may seem to be simple, but 
it turns out that it is somewhat complicated. 
The program will check for all 8 directions, each direction has its 
own function, these functions will check: 
 
1.) Check if in this direction there are opponent’s discs, 
2.) If so, it will continue until it reaches another disc of its own 

colour, 
3.) If it reaches a blank position, it will stop checking and it 

will not flip any of those discs. 
4.) If it exceeds the border of the chessboard, it will stop 

checking and will not flip any of those discs. 
5.) If the next disc is of its own colour, it will not flip anything 

at all. 
 
These functions took me a long period of time to debug and 
make them robust. 

User input 



P2 
 

User Input & Error Handling 
To prevent users from getting program errors with their input, it 
is necessary to create a mechanism to avoid such error from 
user input. This can be achieved by checking if the moves they 
entered are within the range of the chess board array and if the 
moves are valid. So every time they enter a move, the program 
will check if the desired position is available, once validated, it 
will write the move to the chess board array. 
 
 
When does the game end? 
As stated earlier, the game ends in either condition: 
i.)   If no legal move is available for both players, it is a draw game. 
ii.)  All positions are occupied.  
 
So I wrote a function to check every single position of the 
chessboard before the user input, to see if there are any legal 
moves for both players, if there is none, the game ends. If there 
are no legal moves available for the current player, it will display 
a message and tell the current player that he has no moves. 
 



P2 
 

The program flow 
Here is the actual program flow: 

 

No

Place the disc 
on the board 

Program Starts 

Collect user 
information 

Game Starts 

Check if 
board is 

full 

Yes 

See who wins 

Prompt the 
user for his 

move 

No Check if 
move is 

valid 

Check Flipping 

User is black 

Switch User 

Yes 



P2 
 

User Guide 
 

Requirements: 
386 PC or Compatible 
Windows 3.1/95/98/ME/2000/XP or Linux  
(and many other platforms, provided that they have a C compiler) 
 
Compilation: 
Linux 
In Shell, execute the following command: 
#  gcc othello.c –o othello 
(if gcc is not installed, please read the linux distribution’s 
manual.) 
 
Windows 
Obtain any C/C++ compiler from the internet, and follow the 
instructions. 
 
Installation: 
No installation is required. 
 
Running the program: 
Linux 
In the directory that stores your copy of the program, 
type in the following command: 
#  ./othello 
 
Windows 
In MS-DOS, MS-DOS mode (Windows 95/98/ME), or command 
prompt (Windows 2000/XP). 
Type :  
C:\theDirectoryYouStoredIt>othello.exe 



P2 
 

Playing the game 
Please enter two names at the beginning of the game. 
Player 1 will take the black discs, player 2 will take the white 
ones. 
 

 

1&2 Where you input your move 
3 This indicates that your move is not valid, you must place  

your disc where it can flip the discs of your opponent. 
4 This displays who is taking the lead 



P2 
 

To quit, press q when you are prompted to enter the column index 
or press -1 when you are prompted to enter the row index. 



P2 
 

Testing and Evaluation 
 

This program has been successfully compiled under both win32 
environment and Linux environment. And some of the important 
features of this program have also been tested, as you will see 
below. 
 
Pass 
This is a situation where player 1 doesn’t have any valid move and 
he needs to pass this game to his opponent, player 2. 

 
As you can see, the program successfully passes the game when a 
player runs out of moves. 
 



P2 
 

Draw 
This is a situation where both players possess the same number of 
discs at the end of the game. 

 
Since real draw games seldom appears in the game of Othello, I 
had modified the program to initialize half of the array as white 
discs and the other half as black discs, without modifying the core 
of the program. So this proves that the program will recognize a 
real draw game when the time comes. 
 
Win 
There is always a winner in a game. So after each game ends, the 
program must determine which player is the winner. It would count 
both players’ discs on the chess board to see which of them got 
most discs. 

 
As seen from above, the program correctly displayed the number of 
the discs each player possesses and who the winner is. This time, 
it’s player 2 who had won.



P2 
 

Conclusion & Discussion 

 
After word 
 It is some kind of a challenge to write this program. To be 
honest, I have underestimated the complexity of this program. At 
first, I thought the logic and the nature of the othello game is 
simple enough to be converted into a computer program without a 
fuss. But, of course, it turned out that I was wrong. 
 
 During the process of creating this program, I have acquired 
some useful skills. I have learnt to compile programs written in C 
under both win32 and Linux environment. I have learnt to use vi, 
the very useful and popular text editor in the Linux world. And 
because my teacher had provided me a Linux environment to write 
this program, I learnt to use ssh to connect to other computers and 
transfer files though it. These are the skills that can be useful in 
many situations which I may face in the future. I am glad that I 
have this opportunity, it was an incredible experience. 
 
Discussion 
 After all, I admit that this program is a very immature one. It 
has no A.I. capabilities, no network capabilities, not much of a 
friendly user interface. Here are some features that I could have 
done to enhance user experience and improves the program in 
general. 
 
A 1-player game 
After all, it is quite pointless for two people to sit behind the same 
computer to play one chess game. When there is no one around 
that you can play the game with, people wouldn’t prefer to play 
with themselves since this chess game is sometimes an intellectual 
battle between two minds.  
So the simple solution is to create a virtual opponent for the user. 
We could have had the computer to follow a certain strategies, so 
that it would appear to the player that the virtual opponent is a 
human player, flesh and blood. 
Of course we could have let the player to decide the difficulty of the 
game, let them control how tough the virtual opponent would be. 
We could also let them to undo there moves or the computer’s 
moves, to let them learn from there mistakes. But as I am not 
really a Othello master, I cannot set strategies and rules of 
engagement for the program to follow. 



P2 
 

An Online game 
As the internet has become a world full of such diverse culture and 
entertainment, why not add this game to the list? We could have 
allowed users to connect to other players using IP addresses. We 
could even have written a server program to accept a number of 
players as a directory service, to provide a place for users to meet 
other players. But as I am not quite familiar with networking in 
programming, I chose not to write such code. 
 
A GUI version of the game 
A program with a graphical interface can greatly enhance user 
experience. But since codes with GUI are extremely not portable, 
and I don’t have much experience with GUI coding, I chose not to 
write a GUI for this program. 


