Knowledge Update Course for Secondary School Computer and IT Teachers

Computer Networking and Data Communication

Transmission Media

Jasper Wong email: <u>icjwong@polyu.edu.hk</u>

Industrial Centre The Hong Kong Polytechnic University

1

3

July, 2003

- Radio frequencies travel through air or space requiring transmitting and receiving mechanisms
- · Visible light used for communications is harnessed using fiber-optic cable

July, 2003

Optical Fibers - basics

7

- Security: signals cannot be tapped easily
- Stress and heat resistant & reliability and maintenance: constant medium, not subject to fading, adverse temperature, moisture and can be used for underwater cable, long service life span, not affected by short circuit, power surges or static electricity
- Versatility: available for most of data, voice and video communication formats
- Scalable: easily expanded. Only change electronics, no change on fibers
- Low cost, low loss and signal regeneration: optical fibers can travel over 70km before repeating the signals, save cost for repeater and maintenance

Optical Fibers - basics Disadvantages: • - Electrical-to-optical conversion: signal must be converted to light wave and back to electrical signal. Cost on electronics in all applications - Physical right of way is required for the cable installation Optical fiber is predominantly silica glass, special techniques are needed for engineering installation of the fiber cable - repairs: difficult to repair broken optical cable Network interface card and cabling is expensive Connection to network is difficult July, 2003 Computer Networking & Data Communication - Transmission Media 8

9

- · Light travels at 300,000 K/s in a vacuum.
- The speed decrease when it travels through more dense medium
- Light travels in a straight through a single uniform medium
- Light changes speed, and hence, the direction when it travels from a one medium to other with different density.
- When it travels to a less dense medium, and reaches a "Critical Angle", the angle of refraction will become 90 degree.
- If we increase the angle of incidence further, the light will completely reflected, and the reflection phenomenon occurs

July, 2003

Optical Fibers - Single Mode step-index

17

- · Highest bandwidth: 100Gbps per km for a long distant communication
- Bandwidth limitation is due to Chromatic Dispersion (different light colors) .
- Used in long haul applications such as Wide Area Networks (WANs), Metropolitan Networks (MANs), intercity and undersea applications
- · Each undersea optical fiber cable currently being installed has more bandwidth than all operational communication satellites in orbit
- · Copper is no longer installed in undersea applications
- The only disadvantage of the single-mode fiber is its small core for light coupling

July, 2003

July, 2003

Computer Networking & Data Communication - Transmission Media

Optical Fibers - Multimode Step-index

19

- Beams with incident of angle greater than the critical angle will bounce back and forth down the channel to reach the destination
- Light traveling longer paths will take longer to reach the fiber end than the light traveling shorter paths
- Light traveling down the fiber core will reach the end first
- · Light bouncing down the fiber at the critical angle will arrive last
- Different beams will recombine constructively or destructively at different time resulting a signal distortion by propagation delay
- It is not possible to distinguish the individual light pulses when a closely spaced pulses sent down the fiber •
- This distortion limits data rate and bandwidth (typically 20Mbps)
- The fiber is the cheapest and has least bandwidth

July, 2003

- Intrinsic absorptions due to fiber material and molecular resonance
- Extrinsic absorptions due to impurities at around 1240nm and 1390nm
- · Rayleigh Scattering
 - Scattering causes the light energy to be dispersed in all directions, with some light escaping the fiber core
 - A small portion of this light energy is returned down the core and is termed "backscattering"

Optical Fibers - applications

31

Typical applications of glass fiber transmission systems

Wave- length range	Fiber type core/sheath	Maximum segment length (km) 0.1 0.5 1 5 10 50 100 500	Applica- tions
850 nm	100/140 μm 85/125 μm 62.5/125 μm 50/125 μm		AN/ An Premises
1300 nm	62.5/125 μm 50/125 μm 9/125 μm		Custom
1550 nm	9/125 µm in combi- nation with EDFA		Access/Long-haul
780 nm	9/125 µm		PC.

July, 2003 Computer Networking & Data Communication - Transmission Media

July, 2003

Туре

Multimode

Multimode

Single mode

Core/cladding

Diameter (um)

62.5/125

50/125

9/125

Computer Networking & Data Communication - Transmission Media

Optical Fibers - selection

850nm

3.0-4.0

2.4 - 4.0

Typical Optical Fiber Characteristics

Attenuation

(db/km)

1300nm

1.0-2.0

0.75-2.0

0.35-1.0

1550nm

0.25-1.0

Bandwidth

(MHz/Km)

150-800

400-1000

Optical Fibers - loss budget

35

- When installing a fiber network, network topology and equipment specification needed to be considered
- Optical loss budget or end-to-end optical link loss
 - Source
 - Detector
 - Optical transmission line
 - Fiber attenuation loss
 - Source-to-fiber coupling loss
 - Fiber attenuation loss
 - Loss of all components: connectors, splices and pass components

July, 2003

UTP Straight-through Cable

	Hub/Switch		Server/Router	
Pin	Label	Pin	Label	Connection between
1	RD+	1	TD+	switch and server
2	RD-	2	TD-	Connection between
3	TD+	3	RD+	switch and workstation
4	NC	4	NC	
5	NC	5	NC	
6	TD-	6	RD-	
7	NC	7	NC	
8	NC	8	NC	1

UTP T568-B RJ-45 connector

Pin No

1

2

3

4

5

6

7

8

AT & T Standard

Pair No

2

2

3

1

1

3

4

4

Computer Networking & Data Communication - Transmission Media

Function

Transmit

Transmit

Receive

Not used

Not used

Receive

Not used

Not used

Pair 3

Pair 2 Pair 1 Pair 4

12345678

T568B

July, 2003

	Hub/Switch		Server/Router
Pin	Label	Pin	Label
1	RD+	3	TD+
2	RD-	6	TD-
3	TD+	1	RD+
4	NC	4	NC
5	NC	5	NC
6	TD-	2	RD-
7	NC	7	NC
8	NC	8	NC

- Connection between
 switches
- Connection between
 routers
- Connection between
 workstations

UTP cable

Strip off Jacket

Clip wires

Insert wires into RJ-45 plug

Crimp down wires

48

47

R

Wire Color

White/Orange

White/Green

Blue/White

White/Blue

Green/White

Green/White White/Brown

Brown/White

45

July, 2003

Coaxial and UTP Summary

UTP	Performance	Application
CAT-1	none	none
CAT-2	1MHz	Telephone
CAT-3	16MHz	10BaseT, Token Ring 4 Mbps, ISDN low speed
CAT-4	20MHz	Token ring 16
CAT-5	100MHz	100BaseT, 100VG-AnyLAN, Token Ring 20 Mbps

Coax	Impedance	Application
RG-59	75 ohms	Cable TV
RG-58	50 ohms, 5mm diameter	10Base2 or ThinNet
RG-11 and RG-8	50 ohms, 5mm diameter	10Base5, ThickNet

Computer Networking & Data Communication - Transmission Media

July, 2003

50

Propagation of Radio Waves

- The earth is surrounded by two layers:
 - Troposphere and Ionosphere
 - Troposphere is the portion of the atmosphere extending 30 miles from the earth's surface, and contains clouds, wind, temperature variations and jet plane
 - Ionosphere is the layer above the troposphere and below the space, and contains free electrically charged particles

Satellite Communication

63

- · AT & T launched the first communication satellite, Telstar1 in 1962
- · Long delay 300ms to make a return trip to satellite
- · For most of data protocols, the delay is not significant but not for voice
- · In 1998, the Iridium low earth orbit (LEO) satellites launched for practical use
- In 2002, Iridium with its 66 satellites joined the Teledesic to offer data service network with 288 satellites
- Other companies are offering medium earth orbit (MEO) satellites orbiting the earth at 6200 miles (10,390 km)
- More satellites needed for the better service coverage and lesser communication delay.

Satellite Communication - limitations

- · Lack of frequencies; atmospheric limitations prevent the use of higher frequencies for reliable paths
- · Delay from earth station to satellite and back is 300ms
- · Multihop satellite connections impose a delay if the distance between earth stations exceeds the satellite's footprint
- · Path loss is high from earth to satellite
- ٠ Rain absorption affects path loss, particularly at higher microwave frequencies
- · Frequency crowding in the c-band is high with potential for interference between satellites and terrestrial microwave operating on the same frequency

•

•

July, 2003

Low Earth Orbiting Satellites (LEOS)

69

- LEO is a brand new service that avoids the delay inherent with satellite services
- · Much closer to the earth than GEOS
- Do not need large antennas or power transmitters in either satellite
 or the ground station
- · System cost is cheaper and ground station is more portable
- LEOS is constantly moving relative to a ground observer and may need steerable antennas
- · LEOSs orbit between 600 and 1800 km above the ground level
- Less battery drain, cheaper satellites and lower launch costs, less subscriber costs must be launched to provide continuous coverage
- Many satellites used to create continuous coverage are called constellation

July, 2003

Mobile Telecommunication

75

- · Terrestrial Systems
 - Begin from 1800 for maritime navigation and safety
 - 2nd world War for military users
 - 1950 VHF/FM radios for private mobile radio
 - 1970, growth is slow due to spectrum scarcity
 - 1940, "cellular radio" concept was proposed by Bell Laboratories
 - The concept offers a solution to support large numbers of users in a limited spectrum

	A	\$	Reference 😵
EMI	Security		 James Harry Green, "The Irwin Handbook of Telecommunications", 4th Edition, McGraw-hill, 2000.
high	low		 Myron E. Sveum, "Data Communications", 1st Edition, Prince- Hall, 2000.
moderate	low		3. M. Richharia, "Mobile Satellite Communications – Principles
moderate	low		and Trends", 1 st Edition, Adison-Wesley, 2001.
low	high		 Behrouz A. Forouzan, "Data Communications and Networking", 2nd Edition, McGraw-Hill, 2001.
high	low		 Ata Elahi, "Network Communications Technology", 1st Edition, Delmar Thomson Learning, 2001.
high	moderate		6. http://www.siemon.com
high	moderate		7. http://www.acterna.com/
moderate	low		8. http://www.sff.net/people/jeff.hecht/history.html 9. http://www.irda.org
nsmission Me	dia	85	July, 2003 Computer Networking & Data Communication – Transmission Media

Media Comparison

Medium	Cost	Speed	Attenuation	EMI	Security
UTP	Low	1-100 Mbps	high	high	low
STP	moderate	1-150Mbps	high	moderate	low
Coax	moderate	1 Mbps – 1 Gbps	moderate	moderate	low
Optical fiber	high	10Mbps-2Gbps	low	low	high
Radio	moderate	1-10Mbps	Low-high	high	low
Microwave	high	1Mbps-10Gbps	variable	high	moderate
Satellite	high	1Mbps-10Gbps	variable	high	moderate
Cellular	high	9.6-19.2Kbps	low	moderate	low

July, 2003