
1

Knowledge Update Course
for Secondary School Computer and IT Teachers
__

Computer Programming
Day Two

Jasper Wong
email: icjwong@polyu.edu.hk

Industrial Centre
The Hong Kong Polytechnic University

June, 2003

June 2003 Computer Programming Day Two 2

Day Two Agenda

• Repetition: loops and recursion
• Arrays
• Sorting
• Searching
• Pointers
• Derived Types: enumerated, structure and union

June 2003 Computer Programming Day Two 3

Concept of a Loop

• the action is repeated over and
over again.

• It never stops if no controls
• Pre-test loop, check before loop

starts to execute or terminate the
loop

• Post-test loop, code executed
once, then check for loop
execution or termination

An action or a
series of actions

June 2003 Computer Programming Day Two 4

Pretest and Post-Test Loops

June 2003 Computer Programming Day Two 5

Initialization and Updating

• In addition to the loop control expression, there are
two other processes associated with almost all loops:
– Initialization
– Updating

June 2003 Computer Programming Day Two 6

Loop Initialization and update

• Initialization before loop
execution

• Explicitly initialize loop
variables.

• Implicit initialization by
preexisting values

• Update control
conditions to avoid
infinite loop

• Event-controlled loops
and counter-controlled
loops

Initialization

Test

Action(s)

Updating

False

True

Exit

Initialization

Test

Action(s)

Updating

False

True

Exit

(a) Pretest Loop (b) Post-test Loop

June 2003 Computer Programming Day Two 7

Event-Controlled Loops

• In an event-controlled loop, an event changes the loop
control expression from true to false.

• For example, when reading data, reaching the end of
the data changes the loop control expression from
true to false.

• In event-controlled loops, the updating process can be
explicit or implicit.
– If it is explicit, such as finding a specific piece of

information, it is controlled by the loop.
– If it is implicit, such as the temperature of a batch of

chemicals reaching a certain point, it is controlled by
some external condition.

June 2003 Computer Programming Day Two 8

Event-Controlled Loops

Condition

Action(s)

Update
Condition

False

True

Exit

Initialize
Condition

Condition

Action(s)

Update
Condition

False

True

Exit

(a) Pretest Loop (b) Post-test Loop

Initialize
Condition

June 2003 Computer Programming Day Two 9

Counter-Controlled Loops

• Number of an action
to be repeated is
known

• Must initialize,
update, and test the
counter.

• Increment/Decrement
counter update count < n

Action(s)

Add 1 to
count

False

True

Exit

Set count to 0

count < n

Action(s)

Add 1 to
count

False

True

Exit

(a) Pretest Loop (b) Post-test Loop

Set Count to 0

June 2003 Computer Programming Day Two 10

Loop Statements

Loop
statements

forwhile do...while

Pretest Loop Pretest Loop Post-test Loop

June 2003 Computer Programming Day Two 11

while Loop

• A pretest loop, expression is tested before every loop iteration
• No semicolon belongs for the while statement.
• The semicolon belongs to the statement

expression

statement

while (expression)

 statement

(a) Flowchart (b) Sample Code

June 2003 Computer Programming Day Two 12

...

...

while Loop

• A compound
statement is
required for the
multiple
statements
loop

June 2003 Computer Programming Day Two 13

for Loops

• The for statement is a pretest loop that uses three
expressions.
– The first contains any initialization statements
– The second contains the terminating expression
– The third contains the updating expression

June 2003 Computer Programming Day Two 14

statement

expr1

expr2
expr3

True

False

expr2

expr1

expr3

statement

True

False

(a) Flowchart

(b) Expanded Flowchart

for (expr1;expr2;expr3)
 statement

for Loops

• Expression 1 is
executed when the
for starts.

• Expression 2 is the
limit test expression.

• Expression 3 is the
update expression.

June 2003 Computer Programming Day Two 15

for Loops

• Use compound statement to include multiple statements

June 2003 Computer Programming Day Two 16

for Loops

• for loop contains the initialization, update code, and limit
test in one statement.

• Compact in coding

June 2003 Computer Programming Day Two 17

The for Loop

• while loop and for loop for solving the same problem

i = 1;
sum = 0;
while (i <= 20)
{

cin >> a;
sum += a;
i ++;

} // while

sum = 0;
for (i = 1; i <= 20; i++)
{

cin >> a;
sum += a;

} // for

June 2003 Computer Programming Day Two 18

The for Loop

• Example1: print odd numbers; change for statement
for (i = 1; i <= limit; i += 2)
cout << “\t” << i << endl;

• Example2: print numbers back; change for statement
for (i = limit; i >= 1; i --)
cout << “\t” << i << endl;

• Example3: print numbers in two columns with odd number in
the 1st column; change for statement and print statement

for (i = 1; i <= limit; i += 2)
cout << setw(2) << i << setw(2) << i+1 << endl;

June 2003 Computer Programming Day Two 19

The do … while Loop

• While
statements
ends with a
semicolon

June 2003 Computer Programming Day Two 20

The do … while Loop

• While statements ends with a
semicolon

• Example
do
{

cout << “Enter a number
between 10 & 20: ”;

cin >> a;
} while (a < 10 || a > 20);

June 2003 Computer Programming Day Two 21

The Comma Expression

• A comma expression is a complex expression made
up of two expressions separated by commas.

• It can legally be used in many places, it is generally
used only in for statements.

• The expressions are evaluated left to right.
• The value and type of the expression is the value and

type of the right expression.
• The other expression is included for its side effect.
• The comma expression has the lowest precedence of

all expressions, priority 1.

June 2003 Computer Programming Day Two 22

The Comma Expression

• It uses a comma expression to initialize the
accumulator, sum, and the index, i, in the loop.

• the value of the comma expression is discarded.
• This is a common use of the comma operator.

for (sum = 0, i = 1; i <= 20; i++)
{

cin >> a;
sum += a;

} // for

June 2003 Computer Programming Day Two 23

The Comma Expression

• Comma expressions can be nested.
• all expression values other than the last are discarded.
• the value of the expression is the value of the rightmost

expression.
• if a comma expression is the second expression in a for loop,

make sure that the loop control is the last expression.

June 2003 Computer Programming Day Two 24

Other Statements Related to Looping

June 2003 Computer Programming Day Two 25

break

• In a loop, the
break statement
causes a loop to
terminate.

• In a series of
nested loops,
break terminates
only the inner
loop.

--text--

June 2003 Computer Programming Day Two 26

continue

• It does not terminate the loop, but simply transfers to the
testing expression

June 2003 Computer Programming Day Two 27

Looping Applications

• We examine four common applications for loops:
– Summation
– Product
– Smallest
– Smallest or largest
– Inquiries

June 2003 Computer Programming Day Two 28

Summation and Product

June 2003 Computer Programming Day Two 29

Smallest and Largest

• Determine a smallest/largest number
• Example: result = a < b ? a : b;

June 2003 Computer Programming Day Two 30

Inquires
• Inquiry types:

– Any – at east one meets a given criteria
– All – all meet the same specified criteria

June 2003 Computer Programming Day Two 31

Recursion

• Two approaches to write repetitive algorithms.
– One uses loops
– The other uses recursion.

• Recursion is a repetitive process in which a function
calls itself.

• Either approach can be converted to the other’s
• Some older languages do not support recursion, e.g.

Cobol

June 2003 Computer Programming Day Two 32

Iterative Definition

• A repetitive function is defined iteratively whenever
the definition involves only the parameter and not the
function itself.

• Example: factorial (4) = 4 * 3 * 2 * 1 = 24
• A repetitive function is defined recursively whenever

the function appears within the definition itself.
• Example:

Factorial (n) =
1

n * (Factorial (n-1))

if n == 0

if n > 0

June 2003 Computer Programming Day Two 33

Recursive Definition

• The decompostion of factorial (3), the recursive solution for a
problem involves a two –way journey.

• Computer solution is much easier

June 2003 Computer Programming Day Two 34

Recursive Definition

• mechanism with the
parameters for each
individual call.

int main (void)
{
 long factorial(int);
 int n =3;
 long f;

 f = factorial(3);
 cout << f << endl;
 return 0;
} // main

long factorial (long n)
{
 // Statements
 if (n == 0)
 return 1;
 else
 return
 (n * factorial(n-1));
} // factoriallong factorial (long n)

{
 // Statements
 if (n == 0)
 return 1;
 else
 return
 (n * factorial(n-1));
} // factoriallong factorial (long n)

{
 // Statements
 if (n == 0)
 return 1;
 else
 return
 (n * factorial(n-1));
} // factoriallong factorial (long n)

{
 // Statements
 if (n == 0)
 return 1;
 else
 return
 (n * factorial(n-1));
} // factorial

3

2

1

0

1

2

1

6

June 2003 Computer Programming Day Two 35

Designing Recursive Functions

• Every recursive function must have a base case.
• The rest of the function is known as the general case.
• In our factorial example, the base case is factorial (0).

The general case is n * factorial (n-1).
• The general case contains the logic needed to reduce

the size of the problem.
• Every recursive call must either solve part or the

problem or reduce the size of the problem.

June 2003 Computer Programming Day Two 36

Designing Recursive Functions

• In the factorial problem, once the base case has been reached,
the solution begins.

• The program has found one part of the answer and can return
that part to the next more general statement.

• calculate factorial (0) is 1, that value is returned.
• That leads to solving the next general case,

factorial (1) 1 * factorial (0) 1 * 1 1
• The value of factorial (1) is returned to the more general case,

factorial (2), which we know to be
factorial (2) 2 * factorial (1) 2 * 1 2

• Each general case is solved in turn, the next higher general
case can be solved until finally the most general case, the
original problem is solved.

June 2003 Computer Programming Day Two 37

Designing Recursive Functions

• Rules for designing a recursive function.
– First determine the base case.
– Then determine the general case.
– Combine the base case and general case into a function.

• In combining the base and general cases into a function, you
must pay careful attention to the logic.

• Each call must reduce the size of the problem and move it
toward the base case.

• The base case, when reached, must terminate without a call to
the recursive function, it must execute a return.

June 2003 Computer Programming Day Two 38

Fibonacci Numbers

• Let’s look at another example of recursion, a function
that generates Fibonacci numbers.

• Named after an Italian mathematician, Leonardo
Fibonacci, who lived in the early 13th century,
Fibonacci numbers are a series in which each number
is the sum of the previous two numbers.

• The first few numbers in the Fibonacci series are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34

June 2003 Computer Programming Day Two 39

Fibonacci Numbers

• Fibonacci numbers are a series in which each number is the
sum of the previous two numbers.

• The first few numbers in the Fibonacci series are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34

• To start the series, we need to know the first two numbers.
• As you see from the above series, they are 0 and 1.
• We discussing recursion, you should recognize these two

numbers as the base cases.
• We can generalize the Fibonacci series as follows:

Given:
Fibonacci0 = 0
Fibonacci1 = 1

then
Fibonaccin = Fibonaccin-1 + Fibonaccin-2

June 2003 Computer Programming Day Two 40

Fibonacci Numbers

• The left half of the figure shows the components of Fibonacci4
using a general notation.

• The right half of the figure shows the components as they
would be called to generate the numbers in the series.

June 2003 Computer Programming Day Two 41

Concepts of Array

• To print 20 integers, we can declare and define 20
variables, each with a different name

• This approach may be acceptable for 20 integers, it is
definitely not acceptable for 200 or 2,000 or 20,000
integers.

• To process large amounts of data we need a powerful
data structure, such as an array.

• An array is a fixed-size, sequenced collection of
elements of the same data type.

June 2003 Computer Programming Day Two 42

Concepts of Array

• The elements of the array are individually addressed
through their subscripts, a concept shown graphically.

June 2003 Computer Programming Day Two 43

Concepts of Array

• We can use loops to read and write the elements in an
array.
– To add, subtract, multiply, and divide the elements.
– more complex processing such as calculating averages.

• Now it does not matter if there are 2, 20, 200, 2000,
or 20000 elements to be processed, because loops
make it easy to handle them all.

June 2003 Computer Programming Day Two 44

Concepts of Array

• The flowchart showing the
loop used to process our 20
numbers using as array is
seen in following figure.

June 2003 Computer Programming Day Two 45

23
45

12
67
95
45
56
34
83

scores[0]
scores[1]

scores[2]
scores[3]
scores[4]
scores[5]
scores[6]
scores[7]
scores[8]

scores

Elements

Name of
the array

Indexes

Using Arrays in C++

• The following figure
shows
– A typical array,
– Named scores,
– Its values.

June 2003 Computer Programming Day Two 46

Declaration and Definition

• An array must be declared and defined before it can
be used.

• Declaration and definition tell the compiler
– The name of the array
– The type of each element

June 2003 Computer Programming Day Two 47

Declaration and Definition

• The following figure shows three different array
declarations:
– Integers
– Characters
– Floating-point

June 2003 Computer Programming Day Two 48

Initialization

• Initialization of all elements in an array can be done
at the time of declaration and definition, just as with
variables.

• For each element in the array we provide a value.
• The only difference is that the values must be

enclosed in braces and, if there are more than one,
separated by commas.

• It is a compile error to specify more values than there
are elements in the array.

June 2003 Computer Programming Day Two 49

Initialization

• Examples of array initialization.

June 2003 Computer Programming Day Two 50

Assigning Values

• Individual elements can be assigned values using the
assignment operator. Scores[4] = 23;

• You cannot assign one array to another array, if they
match fully in type and size. You have to copy arrays
at the individual element level.

• For example, to copy an array of 25 integers to
second array of 25 integers, you could use a loop, as
shown below.
for (i=0; i<25; i++)

second [i] = first [i];

June 2003 Computer Programming Day Two 51

Assigning Values

• The value of an array follow a pattern, we can use a loop to
assign values.

• For example, the following loop assigns a value that is twice
the index number to array scores.
for (i=0; i<9; i++)

scores [i] = i * 2;
• For another example, the following code assigns the odd

numbers 1 through 17 to the elements of scores.
for (i=0; i<9; i++)

scores [i] = (i * 2) +1;

June 2003 Computer Programming Day Two 52

Input and Output Values

• Typical way to input value from keyboard with an
array

for (i=0; i<9; i++)
cin >> scores [i];

• Typical way to print the contents of an array
for (i=0; i<9; i++)

cout << scores[i];
cout << endl;

June 2003 Computer Programming Day Two 53

Exchanging Values

• To exchange the values of two variables, we use a
temporary variable to store the value in numbers[3]
before moving the data from number[1]

temp = numbers [3];
numbers [3] = numbers [1];
numbers [1] = temp;

June 2003 Computer Programming Day Two 54

Exchanging Values

June 2003 Computer Programming Day Two 55

Index Range Checking

• The C++ language does not check the boundary of an
array, so it is the programmer’s job to ensure that all
references to indexed elements are valid and within
the range of the array.

• Usually, but not always, your program will continue
to run and either produce unpredictable results or
eventually abort.

• Two common Index mistakes as follows:
for (i=1; i<=9; i++)
cin >> scores[i];

June 2003 Computer Programming Day Two 56

Index Range Checking

• The result of this error is that the data stored in
memory after the scores array is erroneously
destroyed.

• In this error, the first element of the array was not
initialized.

• The problems created by unmanaged indexes are
among the most difficult to solve, even with today’s
powerful programming workbenches.

• So you want to plan your array logic carefully and
fully test it.

June 2003 Computer Programming Day Two 57

Arrays and Functions

• To process array in a large program, you have to be
able to pass them to functions.

• You can do this either by
– passing individual elements
– passing the whole array

June 2003 Computer Programming Day Two 58

Passing Individual Element

• Individual elements can be passed to a function like
any ordinary variable.

• As long as the array element type matches the
function parameter type, it can be passed.

• It will be passed as a value parameter, which means
that the function cannot change the value of the
element in the calling function.

June 2003 Computer Programming Day Two 59

Passing Individual Element

• We have a function,
print_square, that
receives an integer and
print its square on the
system console.

• Using the array, base,
we can loop through the
array, passing each
element in turn to
print_square.

#include <iostream.h>

void print_square (int);

int main (void)
{
 int i;
 int base[5] = {3,7,2,4,5};

 for (i=0;i<5;i++)
print_square (base[i]);

 return 0;
}

void print_square (int x)
{
 cout << “ ” << x * x;
 return ;
}

x

9 49 4 16 25

3

7

2

4

5

base [0]

base [1]

base [2]

base [3]

base [4]

base

June 2003 Computer Programming Day Two 60

Passing the Whole Array

• If we want the function to operate on the whole array,
we must pass the whole array.

• A function would use a lot of memory and time to
pass large arrays around every time we wanted to use
one in a function.

• So, instead of passing the whole array, C++ passes
the address of the array.

June 2003 Computer Programming Day Two 61

Passing the Whole Array

• The name of an array is a primary expression whose
value is the address of the first element in the array.

• Since indexed references are simply calculated, all we
need to refer to any of the elements in the array is the
address of the array.

• Because the name of the array is in fact its address,
passing the array name, as opposed to a single
element, allows the called function to refer to the
array back in the calling function.

June 2003 Computer Programming Day Two 62

Passing the Whole Array

• To pass a whole array in the calling function,
– use the array name as the actual parameter.
– declare the corresponding formal parameter is array.
– no need to specify the number of elements in the array.

• Two rules associated with passing a whole array:
– The function is called by passing the array name.
– In the function definition, the formal parameter must

be an array type; the size of the array does not need to
be specified.

June 2003 Computer Programming Day Two 63

Passing Arrays as Constants

• Passing array
name base and
return the average
of the inteers in
the array

• The array is
renamed as x

• Does not modify
the original array
- average

June 2003 Computer Programming Day Two 64

Passing Arrays for Updating

• Change the value
of an array
element by
passing the array
name without the
constant modifier

June 2003 Computer Programming Day Two 65

Passing Arrays for Updating

• In this example, because we do not use the constant
type modifier, we are telling the compiler that the
array can be changed.

• Note that in addition to the array parameter, there is a
local variable in the called function that is used to
“walk” through the array.

June 2003 Computer Programming Day Two 66

Two Common Array Applications

• Two common statistical applications that use arrays
are
– Frequency distributions

• A frequency array shows the number of elements with
an identical value found in a series of numbers.

– Histograms.
• A histogram is a pictorial representation of a frequency

array.

June 2003 Computer Programming Day Two 67

Frequency Array

• Suppose we have taken a sample of 100 values
between 0 and 19.

• We want to know
– How many of the values are 0,
– How many are 1,
– How many are 2, and so forth up through 19.

• We can read these numbers into an array called
numbers. We then create an array of 20 elements that
will show the frequency of each number in the series.

June 2003 Computer Programming Day Two 68

Frequency Array

June 2003 Computer Programming Day Two 69

Frequency Array

• Use a for loop to examine each value in the array of 100
elements

• Assign the value from the data array to an index and then use
the index to access the frequency array.

• The code for this technique is
f = number [i];
frequency [f]++;

• use the value from the array as the index for the array.
• the value of numbers[i] is determined first, and that value is

used to index into frequency. frequency [numbers [i]]++;

June 2003 Computer Programming Day Two 70

Histograms

• Instead of printing
the values of the
elements to show the
frequency of each
number, we can print
a histogram in the
form of a bar chart.

June 2003 Computer Programming Day Two 71

Sorting

• Sorting is a process through which data are arranged
according to their values.

• If the data were not ordered, it would take us hours
and hours to find a single piece of information.

• Two sorting algorithms will be discussed:
– Bubble sort
– Insertion sort

June 2003 Computer Programming Day Two 72

Bubble Sort

• In the bubble sort method, the list is divided into two
sublists: sorted and unsorted.

June 2003 Computer Programming Day Two 73

Bubble Sort

• The list is divided into sorted and unsorted list.
• The smallest element is bubbled from the unsorted sublist and

moved to the sorted sublist.
• After the smallest element has been moved to the sorted list,

the wall moves one element ahead, increasing the number of
sorted elements and decreasing the number of unsorted ones.

• Given list of n elements, the bubble sort requires up to n-1
passes to sort the data

• Each time an element moves from the unsorted sublist to the
sorted sublist, one sort pass is completed

June 2003 Computer Programming Day Two 74

Bubble Sort

June 2003 Computer Programming Day Two 75

Bubble Sort

June 2003 Computer Programming Day Two 76

Insertion Sort

• In the insertion sort, the list is divided into sorted and
unsorted lists.

• In each pass, the first element of the unsorted sublist
is picked up, transferred to the sorted sublist, and
inserted at the appropriate place.

• A list of n elements will take at most n-1 passes to
sort the data

June 2003 Computer Programming Day Two 77

Insertion Sort

June 2003 Computer Programming Day Two 78

Insertion Sort

June 2003 Computer Programming Day Two 79

Sort Conclusions

• Bubble sort
– is implemented in production systems.
– is the foundation for Quicksort and Quickersort.

• Insertion sort
– is used as a subfunction in both Quicksort and

Singleton’s variation,
– is the foundation of a sorting method called Shell Sort.

June 2003 Computer Programming Day Two 80

Searching

• Searching is a process used to find the location of a target
among a list of objects.

• In the case of an array, searching is to find the location
(index) of the first element in the array.

June 2003 Computer Programming Day Two 81

Searching

• The algorithm used to search a list depends to large
extent on the structure of the list. Since our structure
is currently limited to arrays, we will study searches
that work with arrays.

• There are two basic searches for arrays, the sequential
search and the binary search.
– The sequential search can be used to locate an item in

any array
– The binary search requires the list to be sorted.

June 2003 Computer Programming Day Two 82

Sequential Search

• is used in an un-ordered list.
• Is used in a small list or list that is frequently

searched.
• start searching for the target from the beginning of

the list, and continue until the target is found or not in
the list

June 2003 Computer Programming Day Two 83

Sequential Search

• to find the value
62.

• first check the data
at index 0, and,
then at 1, 2, and 3
before finding the
62 in the fifth
element (index 4).

June 2003 Computer Programming Day Two 84

Sequential Search

• The following
figure traces the
search for a target
or 72 to show an
example of how this
works.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

4 21 36 14 62 91 8 22 7 81

a[10] a[11]

77 10

0
index

72 != 4

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

4 21 36 14 62 91 8 22 7 81

a[10] a[11]

77 10

1
index

72 != 21

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

4 21 36 14 62 91 8 22 7 81

a[10] a[11]

77 10

5
index

72 != 91

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

4 21 36 14 62 91 8 22 7 81

a[10] a[11]

77 10

12
index

Index off
end of list

Target given (72)

Note: Not all test points are shown.

June 2003 Computer Programming Day Two 85

Binary Search

• The sequential search algorithm is very slow. If we
have an array of one million elements, we must do
one million comparisons in the worst case.

• If the array is not sorted, this is the only solution.
• If the array is sorted, we can use a more efficient

algorithm call the binary search.
• A binary search is used when a list starts to become

large or more 16 elements.

June 2003 Computer Programming Day Two 86

Binary Search

• The binary search starts by testing the data in the element at
the middle of the array. This determines if the target is in the
first half or the second half of the list.
– If it is in the first half, there is no need to check the second

half any more.
– If it is in the second half, there is no need to test the first

half any more.
• In other words, we eliminate half the list from further

consideration.
• We repeat this process until we find the target or satisfy

ourselves that it is not in the list.

June 2003 Computer Programming Day Two 87

Binary Search

• To find the middle of the list, we need three variables:
– one to identify the beginning of the list.
– one to identify the middle of the list.
– one to identify the end of the list.

• We will analyze two cases:
– (1) the target is in the list and
– (2) the target is not in the list.

June 2003 Computer Programming Day Two 88

Target Found

• Search 22 in a
sorted array.

• 3 indexes first, mid,
and last.

• Given first as 0
and last as 11, we
can calculate mid
as follow:
mid = (first + last)
/ 2;

June 2003 Computer Programming Day Two 89

Target Found

• Since the index mid is an
integer, the result will be
the integral value of the
quotient.

• It truncates rather than
rounds the calculation.

• Given the data in
following figure, mid
becomes 5 as a result of
the first calculation.
Mid = (0 + 11) / 2

= 11 / 2 = 5

June 2003 Computer Programming Day Two 90

Target Found

• At index location 5, the
target is greater than the list
value (22>21).

• eliminate the array
locations 0 through 5.

• assign mid + 1 to first and
repeat the search.

• The next loop calculates
mid with the new value for
first and determines that the
midpoint is now 8.
mid = (6 + 11) / 2 = 17 / 2
= 8

June 2003 Computer Programming Day Two 91

Target Found

• Again we test the target to the
value at mid, and this time we
discover that the target is less than
the list value (22<62).

• This time we adjust the ends of
the list by setting last to mid – 1
and recalculate mid.

• This effectively eliminates
elements 8 through 11 from
consideration.

• We have now arrived at index
location 6, whose value matches
our target.

• This stops the search.

June 2003 Computer Programming Day Two 92

Target Not Found

• If the target is not in the list, the search process
should stop when all possible locations are checked.

• This is done by testing for first and last crossing.
• Two conditions terminate the binary search algorithm:

the target is found or first becomes larger than last.

June 2003 Computer Programming Day Two 93

Target Not Found

• Imagine we want to find
11 in our binary search
array.

3

June 2003 Computer Programming Day Two 94

Target Not Found

• the loop continues to search
until index locations 3 and 4.

• first and last set the mid index
to 3.
mid = (3 + 4) / 2 = 7 / 2 = 3

3

June 2003 Computer Programming Day Two 95

Target Not Found

• The test at index location 3
indicates that the target is
greater than the list value, so
we set first to mid + 1 or 4.

• We test the data at location
4 is 11 < 14.
mid = (4 + 4) / 2 = 8 / 2 = 4

3

June 2003 Computer Programming Day Two 96

Target Not Found

• At this point, the target should be between two
adjacent values; in the other words, it is not in the list.

• We see this algorithmically because last is set to
mid – 1, which makes first greater than last, the
signal that the value we are looking for is not in the
list.

June 2003 Computer Programming Day Two 97

Two-Dimensional Arrays

• In one-dimensional arrays,
data are organized linearly
in only one direction.

• Many applications require
that data be stored in more
than one dimension. One
common example is a table,
which is an array that
consists of rows and
columns.

June 2003 Computer Programming Day Two 98

Two-Dimensional Arrays

• two-dimensional
array is an array
of arrays.

table [0][3]table [0][1] table [0][2]table [0][0]

table [0]

table [1][3]table [1][1] table [1][2]table [1][0]

table [1]

table [2][3]table [2][1] table [2][2]table [2][0]

table [2]

table [3][3]table [3][1] table [3][2]table [3][0]

table [3]

table [4][3]table [4][1] table [4][2]table [4][0]

table [4]

table

June 2003 Computer Programming Day Two 99

Declaring and Defining \
Two-Dimensional Arrays

• two-dimensional arrays must be declared and defined
before being used

• Declaration and definition tell the compiler
– The name of the array
– The type of each element
– The size of each dimension.

June 2003 Computer Programming Day Two 100

Declaring and Defining
Two-Dimensional Arrays

• the array shown in the figure
can be declared and defined
as int table [5] [4];

• By convention,
– The first dimension

specifies the number of
rows in the array.

– The second dimension
specifies the number of
columns in each row.

table [0][3]table [0][1] table [0][2]table [0][0]

table [0]

table [1][3]table [1][1] table [1][2]table [1][0]

table [1]

table [2][3]table [2][1] table [2][2]table [2][0]

table [2]

table [3][3]table [3][1] table [3][2]table [3][0]

table [3]

table [4][3]table [4][1] table [4][2]table [4][0]

table [4]

table

June 2003 Computer Programming Day Two 101

Initialization

• Declaration and definition only reserve memory for
the elements in the array.

• No values will be stored.
• All arrays should be initialized else the contents are

unpredictable.
• Initialization of the array elements can be done when

the array is defined.
int table[5][4] = {0,1,2,3,10,11,12,13,20,21,22,

23,30,31,32,33,40,41,42,43};

June 2003 Computer Programming Day Two 102

Initialization

• A better way:

int table [5][4] =
{
{ 0, 1, 2, 3 },
{ 10, 11, 12, 13 },
{ 20, 21, 22, 23 },
{ 30, 31, 32, 33 },
{ 40, 41, 42, 43 }
};

June 2003 Computer Programming Day Two 103

Initialization

• In this example, we define each row as a one-
dimensional

• Array of four elements enclosed in braces. The array
of five rows also has its set of braces.

• There are commas between the elements in the rows
and also commas between the rows.

June 2003 Computer Programming Day Two 104

Initialization

• In out discussion of one-dimensional arrays, we said
that if the array is completely initialized with supplied
values, it is not necessary to specify the size of the
array.

• This concept carries forward to multidimensional
arrays, except that only the first dimension can be
omitted.

• All others must be specified.

June 2003 Computer Programming Day Two 105

Initialization

• The format is shown below:

int table [5][4] =
{
{ 0, 1, 2, 3 },
{ 10, 11, 12, 13 },
{ 20, 21, 22, 23 },
{ 30, 31, 32, 33 },
{ 40, 41, 42, 43 }

};
• To initialize the whole array to zeros, we specify only the first

values, as shown below:
int table [5][4] = {0};

June 2003 Computer Programming Day Two 106

Inputting Values

• For a two-dimensional array this usually requires
nested for loops.

• If the array is an n by m array, the first loop varies the
row from 0 to n-1.

• The second loop varies the column from 0 to m-1.

June 2003 Computer Programming Day Two 107

Inputting Values

• The code fill the array , is shown below:
for (row = 0; row < 5; row++)

for (column = 0; column < 4; column++)
cin >> table[row][column]);

• When the program runs, we enter the 20 values for
the elements, and they are stored in the appropriate
locations.

June 2003 Computer Programming Day Two 108

Outputting Values

• We can also print the value of the elements one by
one using two nested loops.

• Again, the first loop controls the printing of the rows,
and the second loop controls the printing of the
columns.

• To print the table in its table format, a new line is
printed at the end of each row.

June 2003 Computer Programming Day Two 109

Outputting Values

• The code to print, is shown below:

for (row = 0; row < 5; row++)
{

for (column = 0; column < 4; column++)
cout << setw(8) << table[row][column]);

cout << endl;
}

June 2003 Computer Programming Day Two 110

Accessing Values

• Individual elements can be initialized using the
assignment operator.
table [2] [0] = 23;
table [0] [1] = table [3] [2] + 15;

June 2003 Computer Programming Day Two 111

Memory Layout

• The indexes in the definition of a two-dimensional array
represent rows and columns.

• This format maps to the way the data are laid out in
memory.

• If we were to consider memory as a row of bytes with the
lowest address on the left and the highest address on the
right, then an array would be placed in memory with the
first element to the left and the last element to the right.

• Similarly, if the array is a two-dimensional array, then the
first dimension is a row of elements that are stored to the
left.

June 2003 Computer Programming Day Two 112

Memory Layout

June 2003 Computer Programming Day Two 113

Passing a Two-Dimensional
Array to a Function

• With two-dimensional arrays, there are three
choices for passing parts of the array to a function.

1. Pass individual elements.
2. Pass a row of the array.
3. Pass the whole array.

June 2003 Computer Programming Day Two 114

Passing a Row

• The second case,
passing a row of the
array.

• We pass a whole row
by indexing the array
name with only the
row number.

const int MAX_ROWS = 5;
const int MAX_COLS = 4;
void print_sqr (const int []);
int main(void)
{
 int row;
 int table [MAX_ROWS] [MAX_COLS] =
 {
 {0,1,2,3},
 {10,11,12,13},
 {20,21,22,23},
 {30,31,32,33},
 {40,41,42,43}
 };
 …
 for (row = 0; row < MAX_ROWS; row++)
 print_sqr (table [row]);
 …
 return 0;
} // main

void print_sqr (const int x [])
{
 int col;
 for (col = 0; col < MAX_COLS; col++)
 cout << setw(6) << x [col] * x [col];
 cout << endl;
 return;
} // print_sqr

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

table

x

Address
of a row

June 2003 Computer Programming Day Two 115

Passing a Row

• When we pass the row,
the receiving function
receives a on-
dimensional array of
four integers.

• The for loop in
print_sqr prints the
square of each of the
four elements.

const int MAX_ROWS = 5;
const int MAX_COLS = 4;
void print_sqr (const int []);
int main(void)
{
 int row;
 int table [MAX_ROWS] [MAX_COLS] =
 {
 {0,1,2,3},
 {10,11,12,13},
 {20,21,22,23},
 {30,31,32,33},
 {40,41,42,43}
 };
 …
 for (row = 0; row < MAX_ROWS; row++)
 print_sqr (table [row]);
 …
 return 0;
} // main

void print_sqr (const int x [])
{
 int col;
 for (col = 0; col < MAX_COLS; col++)
 cout << setw(6) << x [col] * x [col];
 cout << endl;
 return;
} // print_sqr

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

table

x

Address
of a row

June 2003 Computer Programming Day Two 116

Passing a Row

• After printing all the values,
the function advances to the
next line on the console and
returns.

• The for loop in main calls
print_sqr five times so that
the final result is a table of
the values squared shown on
the monitor.

const int MAX_ROWS = 5;
const int MAX_COLS = 4;
void print_sqr (const int []);
int main(void)
{
 int row;
 int table [MAX_ROWS] [MAX_COLS] =
 {
 {0,1,2,3},
 {10,11,12,13},
 {20,21,22,23},
 {30,31,32,33},
 {40,41,42,43}
 };
 …
 for (row = 0; row < MAX_ROWS; row++)
 print_sqr (table [row]);
 …
 return 0;
} // main

void print_sqr (const int x [])
{
 int col;
 for (col = 0; col < MAX_COLS; col++)
 cout << setw(6) << x [col] * x [col];
 cout << endl;
 return;
} // print_sqr

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

table

x

Address
of a row

June 2003 Computer Programming Day Two 117

Passing a Row

• We defined the array
dimensions as memory
constants. This allows us to
symbolically refer to the
limits of the array in both
the array definition and the
for loops.

• Now, if we need to change
the size of the array, all that
is necessary is to change the
constant values and
recompile the program.

const int MAX_ROWS = 5;
const int MAX_COLS = 4;
void print_sqr (const int []);
int main(void)
{
 int row;
 int table [MAX_ROWS] [MAX_COLS] =
 {
 {0,1,2,3},
 {10,11,12,13},
 {20,21,22,23},
 {30,31,32,33},
 {40,41,42,43}
 };
 …
 for (row = 0; row < MAX_ROWS; row++)
 print_sqr (table [row]);
 …
 return 0;
} // main

void print_sqr (const int x [])
{
 int col;
 for (col = 0; col < MAX_COLS; col++)
 cout << setw(6) << x [col] * x [col];
 cout << endl;
 return;
} // print_sqr

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

table

x

Address
of a row

June 2003 Computer Programming Day Two 118

Passing the Whole Array

• When we pass a two-dimensional array to a function,
we use the array name as the actual parameter just as
we did with one-dimensional arrays.

• The formal parameter in the called function header.
The function header must indicate that the array has
two dimensions.

• This is done by including two sets of brackets, one
for each dimension, as shown below:
Double average (table [] [MAX_COLS])

June 2003 Computer Programming Day Two 119

Passing the Whole Array

• We do not have to specify the number of rows. It is
necessary to specify the size of the second dimension,
we specified the number of columns in the second
dimension (MAX_COLS).

• In summary, to pass two-dimensional array to
functions,
– The function must be called by passing only the array

name.
– In the function definition, the formal parameter is a

two- dimensional array, with the size of the second
dimension required.

June 2003 Computer Programming Day Two 120

Passing the Whole Array

• we can use a
function to calculate
the average of the
integers in an array.

• In this case, we pass
the name of the array
to the function.

June 2003 Computer Programming Day Two 121

Multidimensional Arrays

• Multidimensiona
l arrays can have
three, four, or
more dimensions.

June 2003 Computer Programming Day Two 122

Multidimensional Arrays

June 2003 Computer Programming Day Two 123

Multidimensional Arrays

• C++ takes the three-dimensional array to be an array
of two-dimensional arrays, and it consider the two-
dimensional array to be an array of one-dimensional
arrays.

• In other words a three-dimension array in C++ is an
array of array of arrays.

• This concept also holds true for arrays of more than
three dimensions.

June 2003 Computer Programming Day Two 124

Multidimensional Arrays

June 2003 Computer Programming Day Two 125

Declaring and Defining
Multidimensional Arrays

• Like one-dimensional arrays, multidimensional arrays
must be declared and defined before being used.

• Declaration and definition tell the compiler the name
of the array, the type of each element, and the size of
each dimension.

• The size of the array is a constant and must have a
value at compilation time.

June 2003 Computer Programming Day Two 126

Declaring and Defining
Multidimensional Arrays

int table [3] [5] [4];

June 2003 Computer Programming Day Two 127

Initialization

• declaration and definition only reserve space for the
elements in the array.

• No values will be stored in the array.
• If we want to store values, we must either initialize

the elements, read values from the keyboard, or
assign values to each individual element.

June 2003 Computer Programming Day Two 128

Initialization

• The initialization of multidimensional arrays relies on
a simple extension of the concept used for initializing
a two-dimensional array.

• For the three-dimensional array, we nest each plane in
a set of braces. For each plane, we bracket the row as
we did for the for the two-dimensional array.

June 2003 Computer Programming Day Two 129

Initialization

{ // Plane 0
{ 0, 1, 2, 3 } //Row 0
{10, 11, 12, 13 } //Row 1
{20, 21, 22, 23 } //Row 2
{30, 31, 32, 33 } //Row 3
{40, 41, 42, 43 } //Row 4

{ // Plane 1
{100 , 101, 102 , 103 } //Row 0
{110, 111, 112, 113 } //Row 1
{120, 121, 122, 123 } //Row 2
{130, 131, 132, 133 } //Row 3
{140, 141, 142, 143 } //Row 4

Int table [3][5][4] =
{

{ // Plane 2
{200 , 201, 202, 203 } //Row 0
{210, 211, 212, 213 } //Row 1
{220, 221, 222, 223 } //Row 2
{230, 231, 232, 233 } //Row 3
{240, 241, 242, 243 } //Row 4

} // table

June 2003 Computer Programming Day Two 130

Initialization

• As we saw previously, the plane’s size, and only the
plane’s, does not have to be specified when we use
explicit initialization.

• The size of all dimensions after the first must be
explicitly stated.

June 2003 Computer Programming Day Two 131

Initialization

• If we want to initialize all the elements to 0, we can
simply initialize only the first element to 0 and let the
compiler generate the code to initialize the rest of the
array of 0s.

int table [3] [5] [4] = {0}

June 2003 Computer Programming Day Two 132

Concepts of pointer

• A pointer is a derived data. It is a data type built from
one of the standard types.

• Its value is any of the addresses available in the
computer for storing and accessing data.

• Pointers are built on the basic concept of pointer
constants.

June 2003 Computer Programming Day Two 133

Pointer Constants

• We’ll begin our
discussion of pointers by
comparing character
constants and pointer
constants.

• We have a character
constant, such as any
letter of the alphabet, that
is drawn from a universe
of all characters.

June 2003 Computer Programming Day Two 134

Pointer Constants

• In most computers, this
universe is ASCII. A
character constant can
become a value and be
stored in a variable.

• Although the character
constant is unnamed, the
variable has a name that
is declared in the program.

June 2003 Computer Programming Day Two 135

Pointer Constants

• there is a character
variable, aChar.

• aChar contains the
value ‘G’ that was
drawn from the
universe of character
constants

June 2003 Computer Programming Day Two 136

Pointer Constants

• The variable aChar has
an address as well as a
name.

• The name is created by
the programmer; the
address is the relative
location of the variable
with respect to the
program’s memory
space.

June 2003 Computer Programming Day Two 137

Pointer Constants

• Assume
– We have a computer

that has only one
megabyte of memory
(220 bytes).

– The computer has
chosen the memory
location 145600 as the
byte to store this
variable.

June 2003 Computer Programming Day Two 138

Pointer Constants

• Operating systems can put a
program in memory
wherever it is convenient
when the program is started.

• aChar is stored at memory
location 145600, which is a
constant for the duration of
the run, the next time the
program is run it could be
located at 876050.

address
character
constants

‘\n’
.
.
.

‘A’
‘G’
‘X’

.

.

.
‘c’
‘k’
‘x’

145600

pointer
constants

MEMORY

G

000000
.
.
.
145595
145600
145603
.
.
.
1048575

June 2003 Computer Programming Day Two 139

Pointer Constants

• The addresses are
constant, we cannot
know what they will
be, and therefore it is
still necessary to
refer to them
symbolically.

address
character
constants

‘\n’
.
.
.

‘A’
‘G’
‘X’

.

.

.
‘c’
‘k’
‘x’

145600

pointer
constants

MEMORY

G

000000
.
.
.
145595
145600
145603
.
.
.
1048575

June 2003 Computer Programming Day Two 140

Pointer Values

• If we have a pointer constant, we should be able to
save its value if we can identify it.

• The address operator (&) provides a pointer constant
to any named location in memory. We nee a pointer
value, therefore, all we must use the address operator.

• The address operator used with aChar is shown below:
&aChar

June 2003 Computer Programming Day Two 141

Pointer Values
• define two character variables and prints their

addresses as pointers.

June 2003 Computer Programming Day Two 142

Pointer Values

• Depending on the operating system, this program
may print different numbers each time you run it.

• The addresses will be different in different computers.
Most of the time, the computer allocates two adjacent
memory locations because we define the two
variables one after the other.

June 2003 Computer Programming Day Two 143

Pointer Values

• The situation changes slightly when integers are
involved. In most computers, integers occupy either
two or four bytes.

• Let us assume that we are working on a system with
four-byte integers, which means that each integer
variable occupies four memory locations.

June 2003 Computer Programming Day Two 144

Pointer Values

• Which of these memory
locations is used to find the
address of the variable?

• In C++ the location of the
first byte is used as the
memory address.
– For characters, there is

only one byte, so its
location is the address;

– For integers, the address
is the first byte of four.

June 2003 Computer Programming Day Two 145

Pointer Values

• The same system
applies to floating-point
and other data types.

• The address of a
variable is the address
of the first byte
occupied by that
variable.

June 2003 Computer Programming Day Two 146

Pointer Variables

• If we have pointer constants and pointer values, then
we also have pointer variables.

• Thus, we can store the address of a variable into
another variable, which is called a pointer variable.

• The concept is illustrated in following figure.

June 2003 Computer Programming Day Two 147

Pointer Variables

June 2003 Computer Programming Day Two 148

Pointer Variables

• We must distinguish
between a variable
and its value.
This figure details
the differences.

• Variable a has its value, -123. the variable a is found
at location 234560 in memory.

• Variable’s name and location are constant, the value
may change as the program executes.

June 2003 Computer Programming Day Two 149

Pointer Variables

• there is a
pointer variable, p.
The pointer has a
name and a location,
both of which are
constant.

• Its value at this point is the memory location 234560. This
means that p is pointing to a.

• The physical representation shows how the data and pointer
variables exist in memory.

• The logical representation shows the relationship between them
without the physical details.

June 2003 Computer Programming Day Two 150

Pointer Variables

• We store a variable’s
address in two or more
different pointer
variables, as shown in
following figure. -123a

p

q 234560

234560

234560

&a

value of p
(address of a)

June 2003 Computer Programming Day Two 151

Pointer Variables

• There is a variable, a.
and two pointers, p
and q.

• Each pointer has a
name and a location,
both of which are
constant.

June 2003 Computer Programming Day Two 152

Pointer Variables

• The value of p and q is
the memory location
234560, which means
that both p and q are
pointing to a.

• There is no limit to the
number of pointer
variables that can point
to a variable.

June 2003 Computer Programming Day Two 153

Pointer Variables

• C++ provides a special null constant, NULL, that can
be used to set a pointer so that it points to nothing.

• You should always use NULL if a pointer does not
contain an address.

• Similarly, when testing a pointer to determine if it is
not active, you should test for NULL.

June 2003 Computer Programming Day Two 154

The Indirection Operator

• C++ has an operator for this purpose, you will find
the indirection operator (*).

• When you dereference a pointer, you are using its
value to reference (address) another variable.

• The indirection operator is a unary operator whose
operand must be a pointer value.

• The result is an expression that can be used to access
the pointed variable for the purpose of inspection or
alteration.

June 2003 Computer Programming Day Two 155

The Indirection Operator

• To access a through the pointer p, you simply code *p.
• The indirection operator is shown below

*p
• Let us assume that we add 1 to the variable, a. We

could do this with any of the following statements,
assuming that the pointer, p, were properly initialized
(p=&a).
a++; a = a+1; *p = *p+1; (*p)++;

June 2003 Computer Programming Day Two 156

The Indirection Operator

• Let’s assume that the
variable x is pointed to
by two pointers, p and
q.

• The figure show, the
expressions x, *p, *q
all are expressions that
allow the variable to be
either inspected or
changed.

?p

q x

multiply
operator

4p

q
x

7p

q
x

8p

q
x

16p

q
x

4 p

qx

7 p

q
x

8 p

q
x

16 p

q
x

256 p

q
x

Before AfterStatement

x = 4 ;

x = x + 3 ;

*p = 8 ;

*&x = *q + *p ;

x = *p * *q ;

June 2003 Computer Programming Day Two 157

The Indirection Operator

• When used in the
right-hand side of the
assignment operator,
they can only inspect
(copy).

• When used in the left-
hand side of the
assignment operator,
they alter the value of
x.

?p

q x

multiply
operator

4p

q
x

7p

q
x

8p

q
x

16p

q
x

4 p

qx

7 p

q
x

8 p

q
x

16 p

q
x

256 p

q
x

Before AfterStatement

x = 4 ;

x = x + 3 ;

*p = 8 ;

*&x = *q + *p ;

x = *p * *q ;

June 2003 Computer Programming Day Two 158

The Indirection Operator

• The indirection and
address operators are
the inverse of each
other, and when they
are combined in an
expression, such as
*&x, they cancel each
other.

• Let’s break down the
expression and examine
it.

?p

q x

multiply
operator

4p

q
x

7p

q
x

8p

q
x

16p

q
x

4 p

qx

7 p

q
x

8 p

q
x

16 p

q
x

256 p

q
x

Before AfterStatement

x = 4 ;

x = x + 3 ;

*p = 8 ;

*&x = *q + *p ;

x = *p * *q ;

June 2003 Computer Programming Day Two 159

The Indirection Operator

• These two unary
operators are evaluated
form the right.

• The first expression is
therefore &x, the
address of x, which is a
pointer value.

• The second expression,
*(&x), dereferences the
pointer constant, giving
the variable (x) itself.

?p

q x

multiply
operator

4p

q
x

7p

q
x

8p

q
x

16p

q
x

4 p

qx

7 p

q
x

8 p

q
x

16 p

q
x

256 p

q
x

Before AfterStatement

x = 4 ;

x = x + 3 ;

*p = 8 ;

*&x = *q + *p ;

x = *p * *q ;

June 2003 Computer Programming Day Two 160

The Indirection Operator

• The operators effectively cancel each other.

• We would never code
the expression *&a in
a program;

June 2003 Computer Programming Day Two 161

Pointer Declaration and Definition

• We use the indirection operator to define and declare
pointer variables.

• Used in this way, it is really not an operator but
rather a compiler syntactical notation.

• Making it the same token as the operator makes it
easier to remember.

June 2003 Computer Programming Day Two 162

Pointer Declaration and Definition

• we declare different
pointer variable. Their
corresponding data
variables are shown for
comparison.

• In each case, the pointer
is declared to be of a
given type. Thus, p is a
pointer to characters, q
is a pointer to integers,
and r is a pointer to
floating-point variables.

June 2003 Computer Programming Day Two 163

Initialization of Pointer Variables

• In general, the C++ language does not initialize
variables. Thus, when we start our program, all of our
uninitialized variables have unknown garbage in them.

• The operating system often clears memory when it
loads a program, but you can’t count on this.

June 2003 Computer Programming Day Two 164

Initialization of Pointer Variables

• When the program starts, the pointers each have some
unknown memory address in them.

• More precisely, they each have an unknown value
that will be interpreted as a memory location.

• Most likely, the value will not be valid for the
computer you are using, or it will not be valid for the
memory you have been allocated.

June 2003 Computer Programming Day Two 165

Initialization of Pointer Variables

• If the address does not exist, you will get an
immediate run-time error.

• If it is a valid address, you often, but unfortunately
not always, get a run-time error.

• It is better to get the error when you use the invalid
pointer than to have the program produce garbage.

June 2003 Computer Programming Day Two 166

Initialization of Pointer Variables

• One of the most common causes of errors in
programming, by novices and professionals alike, is
uninitialized pointers.

• Such errors can be very difficult to debug because the
effect of the error is often delayed until later in the
program execution.

June 2003 Computer Programming Day Two 167

Initialization of Pointer Variables

• both an uninitialized variable and an uninitialized
pointer.

Different garbage:
pointer to unknown

location

???a

some garbage:
unknown value

???p

int a ;

int *p;

?

June 2003 Computer Programming Day Two 168

Initialization of Pointer Variables

• it is possible to initialize pointers when they are declared and
defined.

• The data variable must be defined before the pointer variable.
• if we have an integer variable, x, and a pointer to integer, p,

then to set p to point to x at declaration time, we code it as
shown below.

June 2003 Computer Programming Day Two 169

Initialization of Pointer Variables

• The initialization involves two different steps.
– First, the variable is declared.
– Second, the assignment statement to initialize it is

generated.

June 2003 Computer Programming Day Two 170

Initialization of Pointer Variables

• Some style experts suggest that you should not use an
initializer in this way.

• Some argument is that it saves no code.That the
initializer statement is required either as a part of the
declaration and initialization or as a separately coded
statement in the statement section of the function

• Putting the initialization in the declaration section
tends to hide it and make program maintenance more
difficult

June 2003 Computer Programming Day Two 171

Initialization of Pointer Variables

• We set a pointer to NULL, either during definition or
during execution.

• The following statement demonstrates how we could
define a pointer with an initial value of NULL:
int *p = NULL;

• If you dereference p when it is NULL, you will most
likely get a run-time error! NULL is not a valid
address.

• The type of error you get will depend on the system
you are using

June 2003 Computer Programming Day Two 172

Pointers and Functions

• One of the most useful application of pointers is in
functions.

• When we discussed function earlier, we saw that C++
provides two ways to pass parameters to function:
– Pass by value
– Pass by address

June 2003 Computer Programming Day Two 173

Pointers and Functions

• When we passed by reference, C++ passes the
address of the parameter variable, and the parameter
name becomes an alias for the variable

• Any change made using the alias name resulted in a
change to the original value.

June 2003 Computer Programming Day Two 174

Pointers and Functions

• We have studied pointers, we can all an alternative to
pass by reference:
– Pass a pointer
– Use it to change the original variable

• The difference between pass by reference and passing
pointers is that with pointers an alias is not created –
we must use the dereference operator to effect the
change.

June 2003 Computer Programming Day Two 175

Pointers as Formal Parameters

• the three parameter
formats with an
exchange example.

• In all three examples,
we call the exchange
function, passing it two
variables whose
contents are to be
exchange.

June 2003 Computer Programming Day Two 176

Pointers as Formal Parameters

• The data are exchanged in the called function, but
nothing changes in the calling program. This
obviously unworkable solution is illustrated in figure.

June 2003 Computer Programming Day Two 177

Pointers as Formal Parameters

• The second example uses pass by reference. It this
case, the values are exchanged using the alias names
in the called function.

June 2003 Computer Programming Day Two 178

Pointers as Formal Parameters

• The third example, we can pass pointers to the values. Once we
have a pointer to a variable, it doesn’t make any difference if it
is local to the active function, if it is defined in main, or even if
it is a global variable – we can change it.

June 2003 Computer Programming Day Two 179

Pointers as Formal Parameters

• We need to dereference a pointer to refer to the data it is
pointing to.

June 2003 Computer Programming Day Two 180

Pointers as Formal Parameters

• when we must send back more than one value from a
function, we have two choices:
– Pass by reference
– Pass by pointers

• Both accomplish the same result:
– changing the values in the calling function’s scope.

• Pass by reference is an easier, more natural way to
work, and we recommend it over passing pointers.

June 2003 Computer Programming Day Two 181

Functions Returning Pointers

• Nothing prevents a function from returning a pointer
to the calling function.

• In fact, as we shall see, it is quite common for
functions to return pointers.

• As an example, let us write a rather trivial function to
determine the smaller of two numbers.

June 2003 Computer Programming Day Two 182

Functions Returning Pointers

• we need is a pointer to
the smaller of two
variables, a and b.

• We are looking for a
pointer, we pass two
pointers to the
function, which uses a
conditional expression
to determine which
value is smaller.

June 2003 Computer Programming Day Two 183

Functions Returning Pointers

• Once we know the
smaller value, we can
return the address of its
location as a pointer.

• The return value is then
placed in the calling
function’s pointer, p, so
that after the call it
points to either a or b
based on their values.

June 2003 Computer Programming Day Two 184

Functions Returning Pointers

• When you return a pointer, it must point to data in the
calling function or higher level functions.

• It is an error to return a pointer to a local variable in
the called function because when the function
terminates, its memory may be used by other parts of
the program.

June 2003 Computer Programming Day Two 185

Functions Returning Pointers

• A simple program might not “notice” the error
because the space was not reused,

• A large program would get the wrong answer of fail
when the memory being referenced by the pointer
was changed.

• It is a serious error to return a pointer a local variable.

June 2003 Computer Programming Day Two 186

Pointers to Pointers

• Pointers, we have been using have pointed directly to
data.

• It is possible to use pointer that point to other pointers.
• We can have a pointer pointing to pointer to an

integer.

June 2003 Computer Programming Day Two 187

Pointers to Pointers

• There is no limit
as to how many
levels of
indirection you
can use.

• In practice, it
seldom goes
beyond two
levels.

June 2003 Computer Programming Day Two 188

Pointers to Pointers

• Each level of pointer
indirection requires a
separate indirection
operator when it is
dereferenced.

• In figure, to refer to a
using the pointer p, we
have to dereference it
once, as shown below.
*p

June 2003 Computer Programming Day Two 189

Pointers to Pointers

• To refer to a using the
pointer q, we have to
dereference it twice
because there are two
levels of indirection
(pointers) involved.

• In other word, q is a
pointer to a pointer to an
integer.

• The double dereference
is shown below
**q

June 2003 Computer Programming Day Two 190

Pointers to Pointers

• Let’s look at how we used these
concepts in the C++ code
fragment in figure.

• All three references in the cout
statements refer to the variable a.
– The first print statement

prints the value of a directly.
– The second uses the pointer

p.
– The third uses the pointer q.

• The result is that the value 58
prints three times, as shown
below.
58 58 58

June 2003 Computer Programming Day Two 191

Compatibility and the void pointer

• With one exception, it is invalid to assign to pointer
of one type to a pointer of another type, though the
values in both case are memory addresses and would
seem to be fully compatible.

• The addresses may be compatible because they are
drawn from the same set, what is not compatible is
the underlying data type of the referenced object.

• In C++, we can’t use the assignment operator with
pointers to different types. If we try to , we get a
compile error.

June 2003 Computer Programming Day Two 192

Compatibility and the void pointer

• The exception to the rule is the void pointer.
• The void pointer, known as the universal or generic

pointer, can be used with any pointer, and any pointer
can be assigned to a void pointer.

• A void pointer has no object type, it cannot be
dereferenced. A void pointer is created as shown
below.
void *pVoid;

June 2003 Computer Programming Day Two 193

Casting Pointers

• It is possible to make an explicit assignment between
incompatible pointer types by using a cast, just as it is possible
to cast an integer to a float.

• For example, if for some unfathomable reason you decided
that you had to use the character pointer, p, to point to an
integer (a), you could cast it as shown below.

int a;
char *p;

p = (char *) &a;

June 2003 Computer Programming Day Two 194

Casting Pointers

• In this case, it is user beware! Unless you cast all
operations that used p, you would most likely end up
creating mounds of garbage.

• In fact, we will say that, with the exception of the
void pointer, you should never cast a pointer.

June 2003 Computer Programming Day Two 195

Casting Pointers

• The following assignments are all valid, but they are
extremely dangerous and must be used with a very
carefully though-out design.

// Local Declarations
void *pVoid;
char *pChar;
int *pInt;

// Statements
pVoid= pChar;
pInt = pVoid;
pInt = (int *) pChar;

June 2003 Computer Programming Day Two 196

Casting Pointers

• Let’s construct an example
in which we have two
variable:
– One integer
– One character

• The character has one
pointer associated with if;
the integer has two, one a
second-level pointer.

• These variables and their
pointers are shown in figure.

June 2003 Computer Programming Day Two 197

Casting Pointers

• Without casting the
assignment, we cannot
make the character
pointer point to the
integer value.

• For example, it is
invalid and will result
in a compile error to
store the address on a
in PC.

June 2003 Computer Programming Day Two 198

Casting Pointers

• When the pointers
are associated with
the same type, as
seen in the integer
pointers and
examples in figure,
any assignment
made must be at the
correct level.

June 2003 Computer Programming Day Two 199

Casting Pointers

• It is an error to assign the address of a, even though it is an
integer, to ppa.

• This is because ppa is a pointer to a pointer to an integer.

type: int type: int* type: int**

June 2003 Computer Programming Day Two 200

Casting Pointers

• Its type is pointer to pointer, not pointer to integer.
• It can only be assigned the address of a pointer to an integer.

type: int type: int* type: int**

June 2003 Computer Programming Day Two 201

Arrays and Pointers

• There is a very close relationship between arrays and pointers.
• The name of an array is a pointer constant to the first element.
• Because the array’s name is a pointer constant, its value cannot

be changed. The figure shows an array with the array name as
a pointer constant.

The name of an array is a
pointer constant to its

first element

June 2003 Computer Programming Day Two 202

Arrays and Pointers

• The array name is a pointer constant to the first
element, the address of the first element and the name
of the array both represent the same location in
memory.

• We can use the array name anywhere we can use a
pointer, as long as it is being used as an right-hand
side value.

June 2003 Computer Programming Day Two 203

Arrays and Pointers

• Specifically, this means that we can use it with the
indirection operator. When we dereference an array
name, we are dereferencing the first element of the
array.

• We are referring to array[0]. However, when the
array name is dereferenced, it is referring only to the
first element, not the whole array.

• The name of the array (a) is a pointer only to the first
element – not the whole array.

June 2003 Computer Programming Day Two 204

Arrays and Pointers

• Prove this to yourself by writing program with the
code block shown below. The block prints the
address of the first element of the array (&a[0]) and
the array name, which is a pointer constant.

{ //Demonstrate array name is a pointer constant
int a [5];
cout << “Address of a[0]: ” << &a[0]

<< “Name as pointer: ” << a << endl;
}

June 2003 Computer Programming Day Two 205

Arrays and Pointers

• The values printed by this code will be addresses in
your computer.

• The first printed address (the address of the first
element in the array) and the second printed address
(the array pointer) will be the same, proving our point.

June 2003 Computer Programming Day Two 206

Arrays and Pointers

• A simple variation on this code is to print the value
in the first element of the array using both a pointer
and an index.

This element is
called a[0] or *a

June 2003 Computer Programming Day Two 207

Arrays and Pointers

• The same value, 2, is printed in both cases, again proving our
point that the array name is a pointer constant to the beginning
of the array.

This element is
called a[0] or *a

June 2003 Computer Programming Day Two 208

Arrays and Pointers

• We’ll explore another point. If the name of an array is really a
pointer, let’s see if we can store this pointer in a pointer
variable and use it in the same way we use the name of the
array.

June 2003 Computer Programming Day Two 209

Arrays and Pointers

• Define a pointer and initialize it to point to the first
element of the array by assigning the array name.

• The array name is unqualified, there is no address
operator or index specification.

• We print the first element in the array, first using an
index notation and then pointer notation.

• To access an array, any pointer to the first element
can be used instead of the name of the array.

June 2003 Computer Programming Day Two 210

Arrays and Pointers

• The another example explores the close relationship
between an array and a pointer.

• We store the address names to access each element.
This does not mean that we have two arrays.

• It shows that a single array can be accessed through
different pointers.

June 2003 Computer Programming Day Two 211

Arrays and Pointers

• use of multiple names for an array to reference
different location at the same time.

This is a [0]

This is p [0]

June 2003 Computer Programming Day Two 212

Arrays and Pointers

• First, we have the array
name. We create a
pointer to integer and
set it to the second
element of the array
(a[1]).

• It is a pointer, we can
use it as an array name
and index it to point to
different elements in the
array.

This is a [0]

This is p [0]

June 2003 Computer Programming Day Two 213

Arrays and Pointers

• We demonstrate this by
printing the first two
elements using first the
array name and then the
pointer.

• When a pointer is not
referencing the first
element of an array, it can
have a negative offset.

• This is shown in the
reference to p[-1].

This is a [0]

This is p [0]

June 2003 Computer Programming Day Two 214

Pointer Arithmetic and Arrays

• Besides indexing, there is another powerful method
of moving through an array: pointer arithmetic.

• Pointer arithmetic offers a restricted set of arithmetic
operators for manipulating the address in pointers.

• Pointer arithmetic is especially powerful when we
want to move through an array from element to
element, such as when we are searching an array
sequentially.

June 2003 Computer Programming Day Two 215

Pointers and One-Dimensional Arrays

• If we have an array, a, then a is a constant pointing to
the first element and a+1 is a constant pointing to the
second element.

• Again, if we have a pointer, p, pointing to the second
element of an array, then p-1 is a pointer to the
previous (first) element and p+1 is a pointer to the
next (third) element.

June 2003 Computer Programming Day Two 216

Pointers and One-Dimensional Arrays

• Furthermore, given a, a+2 is the address two elements
from a and a+3 is the address three elements from a.

• We can generalize the notation, therefore, as follows:
Given pointer, p, p±n is a pointer to the value n
elements away.

June 2003 Computer Programming Day Two 217

Pointers and One-Dimensional Arrays

• It does not matter how a and p are defined or initialized; as
long as they are pointing to one of the elements of the array,
we can add or subtract to get the address of the other elements
of the array.

2
4
6
8

22

p - 1a

pa + 1

p + 1a + 2

p + 2a + 3
p + 3a + 4

June 2003 Computer Programming Day Two 218

Pointers and One-Dimensional Arrays

• The meaning of adding or subtracting here is different from
normal arithmetic.

• When you add an integer n to a pointer value, you will get a
value that corresponds to another index location n elements
away.

• In other words, n is an offset from the original pointer. To
determine the new value, C++ must know the size of one
element.

• The size of the element is determined by the type of the
pointer.

• This is one of the prime reasons that pointers of different types
cannot be assigned to each other.

June 2003 Computer Programming Day Two 219

Pointers and One-Dimensional Arrays

• If the offset is 1, then C++ can simply add or subtract
one element size from the current pointer value.

• This may make the access more efficient than the
corresponding index notation.

• If the offset is more than 1, C++ must compute the
offset by multiplying the offset by the size of one
array element and adding it to the pointer value.

• This calculation is shown below.
Address = pointer + (offset * size of element)

June 2003 Computer Programming Day Two 220

Pointers and One-Dimensional Arrays

• Depending on the hardware, the multiplication in this
formula can make it less efficient than simply adding
1, and the efficiency advantage of pointer arithmetic
over indexing may be lost.

June 2003 Computer Programming Day Two 221

Pointers and One-Dimensional Arrays

memory
addresses

June 2003 Computer Programming Day Two 222

Pointers and One-Dimensional Arrays

• For char, which is
usually
implemented as one
byte, adding 1
moves us to the next
memory address
(101).

• Assuming that
integers are four
bytes (b), adding 1
moves us four bytes
in memory (104).

memory
addresses

June 2003 Computer Programming Day Two 223

Pointers and One-Dimensional Arrays

• Finally, assuming the
size of float is six
bytes (c), adding 1
moves us six bytes in
memory (106).

• In other words, a+1
means different things
in different situations.

memory
addresses

June 2003 Computer Programming Day Two 224

Pointers and One-Dimensional Arrays

• Let look at how we can use that value
• We have two choices:

– First, we can assign it to another pointer. This is a
rather elementary operation that uses the assignment
operator, as shown below.
p = aryName + 5;

– Second, we can use it with the indirection operator to
access or change the value of the element we can
pointing to.

June 2003 Computer Programming Day Two 225

Pointers and One-Dimensional Arrays

• This possibility is demonstrated in following figure.

June 2003 Computer Programming Day Two 226

Pointers and One-Dimensional Arrays

• To practice, let’s use pointers to find the smallest
number among five integers stored in an array.

• The following figure tracks the code as it works its
way through the array.

• We start with the smallest pointer (pSm) set to the
first element of the array.

June 2003 Computer Programming Day Two 227

Pointers and One-Dimensional Arrays

June 2003 Computer Programming Day Two 228

Pointers and One-Dimensional Arrays

• The function’s job is to see if any of the remaining
elements are smaller.

• Since we know that the first element is not smaller
than itself, we set the walking pointer (pWalk) to the
second element.

• The walking pointer then advances through the
remaining elements, each time checking the element
it is current element is smaller, its location is assigned
to pSm.

June 2003 Computer Programming Day Two 229

Pointers and Other Operators

• Arithmetic operations involving pointers are very
limited.

• Addition can be used only when one operand is a
pointer and the other is an integer.

• Subtraction can be used only when both operands are
pointers or when the first operand is a pointer and the
second operand is an integer, such as an array index.

• You can manipulate a pointer with the postfix and
unary increment and decrement operators.

• All of the following pointer arithmetic operations are
valid: p+5 5+p p-5 p1-p2 p++ --p

June 2003 Computer Programming Day Two 230

Pointers and Other Operators

• When one pointer is subtracted from another, the
result is an index representing the number of elements
between the two pointers.

• Note, however, that the result is meaningful only if
the two pointers are associated with the same array
structure.

June 2003 Computer Programming Day Two 231

Pointers and Other Operators

• The relational operators are allowed only if both
operands are pointers of the same type.

• Two pointer relational expressions are shown below.
p1>=p2 p1!=p2

• The most common comparison is a pointer and the
NULL constant, as shown in Table.

if (ptr)if (ptr !=NULL)
if (!ptr)if (ptr==NULL)
Short FormLong Form

June 2003 Computer Programming Day Two 232

Pointers and Two-Dimensional Arrays

• This Figure
contains a two-
dimensional array
and a code
fragment to print
the array.

table

table [0] or *(table + 0)

for (i = 0; i < 3; i++)
 {
 for (j = 0; j < 4; j++)
 cout << setw(6) << *(*(table+i)+j);
 cout << endl;
 } // for i

table + 1

table [1] or *(table + 1)

table + 2

table [2] or *(table + 2)

int table[3][4]

June 2003 Computer Programming Day Two 233

Pointers and Two-Dimensional Arrays

• The complex expression shown below.
*(*table + i) + j)

• This pointer notation is equivalent to the index syntax,
table[i][j]. With multidimensional arrays, the pointer
arithmetic has no efficiency advantage over indexing.

• Because the pointer notation for multidimensional
arrays is so complex and there is no efficiency
advantage, most programmers find it easier to use the
index notation.

June 2003 Computer Programming Day Two 234

Passing an Array to a Function

• The name of an array is actually a pointer to the first
element, we can send the array name to a function for
processing.

• When we pass the array, we do not use the address
operator.

• Remember, the array name is a pointer constant, so
the name is already the address of the first element in
the array.

• A typical call would look like the following:
doIt (aryName);

June 2003 Computer Programming Day Two 235

Passing an Array to a Function

• The called program can declare the array in one of
two ways.

• First, it can use the traditional array notation. This
format has the advantage of telling the user very
clearly that the program is dealing with an array
rather than a single pointer.

• This is an advantage from a structured programming
and human engineering point of view.
int doIt (int ary []);

June 2003 Computer Programming Day Two 236

Passing an Array to a Function

• You can declare the array in the prototype statement
as a simple pointer.

• The disadvantage to this format is that, while it is
technically correct, it actually masks the data
structure (array).

• For one-dimensional arrays, it is the code of choice
with professional programmers.
int doIt (int *arySalary);

June 2003 Computer Programming Day Two 237

Passing an Array to a Function

• If you are passing a multidimensional array, you must
use the array syntax in the header declaration and
definition.

• The compiler needs to know the size of the
dimensions after the first to calculate the offset for
pointer arithmetic.

• To receive a three-dimensional array, you would use
the following declaration in the function’s header
statement:
float doIt (int bigAry [] [12] [5]);

June 2003 Computer Programming Day Two 238

Memory Allocation Functions

• We have two choices when we want to reserve
memory locations for an object:
– Static allocation
– Dynamic allocation

June 2003 Computer Programming Day Two 239

Memory Allocation Functions

• Static memory allocation requires that the declaration
and definition of memory be fully specified in the
source program.

• The number of bytes reserved cannot be changed
during run time.

• Static allocation is the technique we have used in this
book to this point.

• It works fine as long as you know exactly what your
data requirements are.

June 2003 Computer Programming Day Two 240

Memory Allocation Functions

• Dynamic memory allocation uses predefined
operators to allocate and release memory for data
while the program is running.

• This approach effectively postpones the data
definition to run time.

• To use dynamic memory allocation, the programmer
must use either standard data types or already must
have declared any derived types.

June 2003 Computer Programming Day Two 241

Memory Allocation Functions

• This figure shows the characteristics of memory
allocation.

June 2003 Computer Programming Day Two 242

Memory Usage

• C++ uses two memory operators: new is used to
allocate space from dynamic memory, and delete is
used to return it for reuse, as shown in following
figure.

June 2003 Computer Programming Day Two 243

Memory Usage

• The conceptual view of memory

MEMORY

PROGRAM MEMORY

DATA MEMORY

main called and standard
function

global program
heap

system
stack

June 2003 Computer Programming Day Two 244

Memory Usage

• Conceptually, we can say that memory is divided into
– Program memory
– Data memory

• Program memory consists of the memory used for
main and all called functions.

• Data memory consists of permanent definitions, such
as global data and constants, local definitions, and
dynamic data memory

June 2003 Computer Programming Day Two 245

Memory Allocation (new)

• The new operator allocates dynamic memory large
enough to store the type being allocated and return its
address as a pointer.

• The operator new is a unary operator; its operand is
the object type for the memory being allocated.

• The compiler knows the size of all types, standard
and derived, it knows the amount of space needed by
the object’s type.

June 2003 Computer Programming Day Two 246

Memory Allocation (new)

• The following example allocates memory for an
integer and assigns its address to the pointer.
int *ptr;
ptr = new int;

• If there is not enough dynamic memory for an object,
C++ returns a NULL pointer.

June 2003 Computer Programming Day Two 247

Memory Allocation (new)

• a typical new allocation.

• we are allocating one integer object.
– If the memory is allocated successfully, ptr contains a value (address).
– If the memory allocation is not successful (ptr contains NULL), there is

no memory and we exit the program with error code 100.

June 2003 Computer Programming Day Two 248

Initialization of Dynamic Memory

• Allocations for standard data types can be initialized
with the new operator.

• Initialization for derived types must be programmed.
• To initialize a standard type, we enclose the initializer

in parentheses after the type.
• To initialize the dynamic memory integer we

allocated earlier to the value 39, we would write the
following code:
int *ptr;
ptr = new int(39);

June 2003 Computer Programming Day Two 249

Releasing Memory (delete)

• When dynamic memory locations are no longer
needed, they should be released using the delete
operator.

• Delete is a unary operator. Its operand is a pointer
that was previously used to dynamically allocate
memory using the new operator.

• It is an error to delete memory that was not allocated
with the new operator or to refer to memory after it
has been released.

• The statement to delete our pointer to integer is
shown below.
delete ptr;

June 2003 Computer Programming Day Two 250

Releasing Memory (delete)

• To delete a dynamic array, we place brackets after the
delete operator as shown below.

• It is an error to use the delete operator without
brackets to delete an array.
delete [] ptr;

June 2003 Computer Programming Day Two 251

Releasing Memory (delete)

• The figure shows two delete example.

June 2003 Computer Programming Day Two 252

Releasing Memory (delete)

• The first one releases a single element, allocated back to
dynamic memory.

• In the second example, the 200 elements were previously
allocated.

• When we delete the pointer, all 200 elements are released

June 2003 Computer Programming Day Two 253

Releasing Memory (delete)

• You should note two things in this figure.
– First, it is not the pointers that are being released but rather what they

point to.
– Second, to release a dynamic memory array, you need only release the

pointer once

June 2003 Computer Programming Day Two 254

Releasing Memory (delete)

• Releasing memory does not change the value in a
pointer. It still contains the address in the heap.

• It is a logic error to use the pointer after memory has
been released.

• Your program may continue to run, but the data may
be destroyed if the memory area is allocated for
another use.

• This logic error is very difficult to trace in your
program. We suggest that immediately after you free
memory you also clear the pointer by setting it to
NULL.

June 2003 Computer Programming Day Two 255

Array of Pointers

• Using a two-dimensional array to store these numbers
would waste a lot of memory.

• The solution in this case is to create five one-
dimensional arrays that are joined through an array of
pointers

June 2003 Computer Programming Day Two 256

Array of Pointers

• This concept is shown
in following figure
along with the
statements needed to
allocate the arrays in
the heap.

• table is a pointer to a
pointer to an integer
and must be declared
as shown below, not as
an array.
int **table

June 2003 Computer Programming Day Two 257

Derived Types

• We will discuss three of the remaining derived types:
– Enumerated
– Structure
– Union

• The derived types are shown in this figure.

June 2003 Computer Programming Day Two 258

Enumerated Types

• The enumerated type, enum, is derived from the
integer type.

• In an enumerated type, each integer value is given an
identifier called an enumeration constant.

• We can use symbolic names rather than numbers,
which makes our programs much more readable

• For example, enumeration make it possible to give
symbolic names to the case identifiers in a switch
statement, thereby making the switch cases more
readable.

June 2003 Computer Programming Day Two 259

Enumerated Types
• Once we have declared an enumerated type, we can create

variables from the standard types.
• In fact, C++ allows the enumerated constants, or variables that

hold enumerated constants to be used anywhere.
• As shown in this figure, there are two basic enumeration

formats: the enumeration constant and the enumeration type.

enum { enumeration constants };

enum type_name { enumeration constants };
type_name variable_name;

June 2003 Computer Programming Day Two 260

Enumerated Types

• Both enumeration formats start with the keyword
enum.

• The enumeration constant is followed by a list of
enumeration constants.

• For example, enumeration constants for on and off
may be declared as shown below.
enum {off, on};

June 2003 Computer Programming Day Two 261

Enumerated Types

• The only difference between the enumeration constant
and the enumeration type is that the type is given a
type name.

• The type name can be used to declare enumerated
variables.

• An enumerated type for the months of the year is
shown below, followed by a variable definition.

enum months {jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec};
months dateMonth;

June 2003 Computer Programming Day Two 262

Enumerated Types
• The list of constant identifiers provides the symbolic names we

can use in our programs.
• The first thing you should notice is that the list is contained

within braces.
• The purpose of an enumerated type is to assign names to

integers, the question is what integers are we assigning these
names to?

• When you don’t tell C++ what values you want to use, it
simply start at 0 and then equates each enumerated constant to
the next higher integral number.

• In this case, jan equates to 0, feb equates to 1, and so forth,
until we get to dec, which equates to 11.

June 2003 Computer Programming Day Two 263

Enumerated Types

• There’s nothing wrong with the way we set up our months,
unless we are asking users to given us a month.

• In that case, it’s not a good idea to ask users to have to
manipulate the data they give us because often this leads to
errors.

• What we should do, therefore, is to equate each month to its
normal value, such as the value 1 for January.

• This is done with an assignment operator, as shown below.
enum months { jan = 1, feb = 2, mar = 3,

apr = 4, may = 5, jun = 6,
jul = 7, aug = 8, sep = 9,
oct = 10, nov = 11, dec = 12 };

June 2003 Computer Programming Day Two 264

Enumerated Types

• This is perfectly good code.
• We can shorten it a little by using the compiler.
• Because C++ assigns the next larger integer to each

enumeration constant, we can specify the starting
point and let C++ do the rest of the work.

• Here’s months, coded the shorter way.
enum months { jan = 1, feb, mar,

apr, may, jun,
jul, aug, sep,
oct, nov, dec };

• Now jan will start with a rather than 0, and all the
other months will fall in line.

June 2003 Computer Programming Day Two 265

Enumerated Types

• Three final thoughts about enumerated types:
• First, C++ allows you to assign the same integer to

multiple enumeration constants in the same definition.
• For example, in the enumerated colors below, we

have assigned the same number to orange and
tangerine.
enum colors (green, blue, orange, tangerine = 2};

June 2003 Computer Programming Day Two 266

Enumerated Types

• Second, while the underlying type for enumeration is
integer, C++ treats it as a separate type.

• Because C++ promotes an enumerated type to integer
when required, you can assign an enumerated type to
an integer.

• You cannot assign an integer to an enumerated type
unless you cast it.

• Assigning orange to an integer is permitted, nut
assigning 5 to a variable of type colors is not.

• This is true even if the integer is in the enumerated
type’ range.

June 2003 Computer Programming Day Two 267

Enumerated Types

• Finally, enumerated types are promoted to integers when they
are printed.

• If we were to print shirt in this example.

colors shirt;
int x;

shirt = orange; // OK
shirt = 2; // ERROR
shirt = (color) 2; // OK
x = orange; //OK. x is 2

• We would see 2, not orange. If we want to print the colors, we
would use a switch statement to determine the color and print
the appropriate literal description

June 2003 Computer Programming Day Two 268

Structure

• A structure is a collection of related elements, possibly of
different types, having a single name.

• Each element in a structure is called a field.
• A field is the smallest element of named data that has meaning.
• It has many of the characteristics of the variables you have

been using in your programs.
• It has a type and it exists in memory.
• It can be assigned values, which in turn can be accessed for

selection or manipulation.
• As an example, consider the data you might store about a

student.
– Several fields come to mind quickly: name, student number,

address, major and so forth.

June 2003 Computer Programming Day Two 269

Structure

• We have studied another data type that can hold
multiple pieces of data: the array.

• The difference between an array and a structure is
that all elements in an array must be of the same type,
while the elements in a structure can be of the same
or different types.

June 2003 Computer Programming Day Two 270

Structure

• This figure contains two
examples of structures.

• The first example, fraction
has two field, both of which
are integer.

• The second example,
student, has three field, two
of which are integers and
one an array.

First field Second field

First field Second field Third field

structure

structure

June 2003 Computer Programming Day Two 271

Structure
• One design caution to keep

in mind concerning
structures is that the data in
a structure should all be
related to one object.

• In this figure, the integers
in the fraction in the first
example both belong to the
same fraction and the data
in the second example all
relate to one student.

• It is not good structured
programming practice to
combine unrelated data,
even for programming
expediency.

First field Second field

First field Second field Third field

structure

structure

June 2003 Computer Programming Day Two 272

Structure Declaration and Definition

• Like all data
types,
structures must
be declared and
defined.

• To declare a
structure type,
we use the
keyword struct
followed by the
name of the
type and its
field list

struct type-name { field-list };

typeName

……..fieldName1 fieldName2 fieldNameN

……..

varName

fieldName1 fieldName2 fieldNameN

struct type-name
{
type1 fieldName1;
type2 fieldName2;
………….
………….
typen fieldNameN;
};

type-name varName;

type-name is a
defined type that

can be used to
define a variable

June 2003 Computer Programming Day Two 273

Structure Declaration and Definition

• To define variable at the same time you declare the structure,
you can simply list the variables, separated by commas, after
the closing brace.

• There are two reasons why we do not recommend that you do
so.

• First, the proper place for structure declarations is in the global
area of the program before main.

• This puts them within the scope of the entire program and is
mandatory if the structure is to be shared by functions.

• In fact, on large projects, you will usually find the structures
declared in a header file that is shared by all members of the
project.

June 2003 Computer Programming Day Two 274

Structure Declaration and Definition

• The second reason is that it breaks the rule of putting
multiple variable definitions in one statement.

• If you do define a variable when you define the
structure, we strongly suggest that you define only
one.

June 2003 Computer Programming Day Two 275

Structure Declaration and Definition
• Once you have declared a structure, you can use it to define

variables.
• To declare and use the student structure, you would code it as

follows.

struct STUDENT
{

intid;
intmidterm[3];
intfinal;

};

STUDENT aStudent;
…
void printStudent (STUDENT Stu);

June 2003 Computer Programming Day Two 276

Initialization

• A structure can be initialized.
• The rules for structure initialization are similar to

the rules for array initialization:
1. The initializers are enclosed in braces and separated

by commas
2. The initializers must match their corresponding types

in the structure declaration
3. If you use a nested structure, the nested initializers

must be enclosed in their own set of braces.

June 2003 Computer Programming Day Two 277

Initialization

• The figure shows two examples of structure
initialization.

Filled with
binary zero

Filled with
float zero

June 2003 Computer Programming Day Two 278

Initialization

• In the first example, there is an initializer for each
field.

• How they are mapped to the structure in sequence.
• The second example demonstrates what happens

when no all fields are initialized.
• As with arrays, when one or more initializers are

missing, the structure elements will be assigned null
values – 0 for integers and floating-point numbers,
and ‘\0’ for characters.

June 2003 Computer Programming Day Two 279

Accessing Structures

• We will first discuss how to access individual
components of a structure and then consider the
assignment of whole structures.

• After looking at how pointers are used with structures,
we will conclude by examining arrays of structures.

June 2003 Computer Programming Day Two 280

Referencing Individual fields

• Each field in a structure can be accessed and
manipulated using expressions and operators.

• Anything you can do with an individual variable can
be done with a structure field.

• The only is problem is to identify the individual fields
you are interested in.

June 2003 Computer Programming Day Two 281

Referencing Individual fields

• Each field in a structure has a name, we could simply
use the name.

• The problem with such a simple approach is that if
we wanted to compare a student’s id in one structure
to a student’s id in another structure, the statement
would end up being
if (id == id)

June 2003 Computer Programming Day Two 282

Referencing Individual fields

• Which is an ambiguous expression.
• We need some way to identify the structures that

contain the field identifiers, in this case, id.
• C++ uses an operator that is common to many other

languages, the member operator, which is simple a
period (.).

June 2003 Computer Programming Day Two 283

Referencing Individual fields

• Using the structure student, we can refer to the
individual components as shown below.

aStudent.id
aStudent.midterm[1]
aStudent.final

June 2003 Computer Programming Day Two 284

Referencing Individual fields

• This figure contains another example, using the structure
sample.

• With this structure, we can use a selection statement to
evaluate the character member, u, and, if it is an ‘A’, add the
two integer elements and store the result in the first.

• This code is shown below.
if (sam2.u == ‘A’)

sam2.x += sam2.y; sam2.x

sam2.y

sam2.t

sam2.u

June 2003 Computer Programming Day Two 285

Referencing Individual fields

• We can also read data into and write data from
structure members just as we can from individual
variables.

• For example, the value for the field of the sample
structure can be read from the keyboard and placed in
sam1 using the input statement below.

cin >> sam1.x >> sam1.y >> sam1.t >> sam1.u;

June 2003 Computer Programming Day Two 286

Precedence of Member Operator

• The dot operator creates a postfix expression from a
primary expression.

• When you use the dot operator, the value must be
determined immediately.

• For example, consider the following statements:
sam2.x++ ++sam2.x

June 2003 Computer Programming Day Two 287

Structure Operations

• The structure is an entity that can be treated as a
whole.

• However, only one operation, assignment, is allowed
on the structure itself.

• In other words, a structure can only be copied to
another structure of the same type using the
assignment operator.

• Rather than assign individual members when we want
to copy one structure to another, we can simply
assign one to the other.

June 2003 Computer Programming Day Two 288

Structure Operations

• This figure copies sam1 to sam2.

June 2003 Computer Programming Day Two 289

Pointer to Structures

• Structures, like other types, cal be accessed through
pointers.

• In fact, this is one of the most common methods used
to reference structures.

• For example, let’s use our SAMPLE structure with
pointers

• The first thing we must do is define a pointer for the
structure, as shown below.
SAMPLE *ptr;

June 2003 Computer Programming Day Two 290

Pointer to Structures

(*ptr).x (*ptr).u

(*ptr).y (*ptr).t

June 2003 Computer Programming Day Two 291

Pointer to Structures

• We now assign the address of sam1 to the pointer
using the address operator (&) as we would with any
other pointer.
ptr = &sam1;

• Now we can access the structure itself and all the
members using the pointer, ptr.

• The structure itself can be accessed like any object
using the indirection operator (*).
*ptr // Refer to whole structure

June 2003 Computer Programming Day Two 292

Pointer to Structures

• The pointer contains the address of the beginning of
the structure, we do not use the structure name with
the number operator, the pointer takes its place.

• The reference to each of the SAMPLE members is
shown below.
(*ptr).x (*ptr).y (*ptr).t (*ptr).u

June 2003 Computer Programming Day Two 293

Pointer to Structures

• The parentheses in the above expressions.
• They are absolutely necessary; however, omitting

them is a very common mistake.
• They are required because the precedence priority of

the member operator (17) is higher than the priority
of the indirection operator (15).

• If you do not use the parentheses, C++ applies the dot
operator first and the asterisk operator next.

• In other words,
*ptr.x is interpreted as *(ptr.x)
which is wrong.

June 2003 Computer Programming Day Two 294

Pointer to Structures

• The expression *(ptr.x) means that there is a
completely different structure called ptr that contains
a member, x, which must be a pointer.

• This is not the case, the result is a compile error.
• The correct notation, (*ptr).x, first resolves the

primary expression (*ptr) and then applies the
dereferenced value to the member, x.

June 2003 Computer Programming Day Two 295

Pointer to Structures

• This figure shows how this error is interpreted.

(*ptr).x

*ptr.x

undefined
structure

June 2003 Computer Programming Day Two 296

Selection Operator

• There is another operator that eliminates the problems
with pointers to structures – the selection operator.

• The selection operator is at the same level as the
member operator.

(*pointerName).fieldName

pointerName fieldName

Same As

June 2003 Computer Programming Day Two 297

Selection Operator

• The token for the selection operator is an arrow
formed by the minus sign and the greater than symbol
().

• The token is placed immediately after the pointer
identifier and before the member to be referenced.

June 2003 Computer Programming Day Two 298

Selection Operator

• We use this operator to refer to the members of our previously
declared structure, sam1, in this figure.

ptr -> x

ptr -> y ptr -> t

ptr -> u

June 2003 Computer Programming Day Two 299

Complex Structures

• The structures were designed to handle complex
problems.

• The limitations on structures are not on the structures
themselves but on the imagination of the software
engineers who solve the problems

• Structures within structures, arrays within structures
(nested structure), and arrays of structures are all
common.

June 2003 Computer Programming Day Two 300

Nested Structures

• We have structure as members of a structure.
• When a structure includes another structure, it is a

nested structure.
• There is no actual limit to the number of structures

that can be nested, but in practice, the number seldom
goes beyond three.

June 2003 Computer Programming Day Two 301

Nested Structures

• For example, we can have a structure called stamp that stores
the date and the time.

• The date is in turn a structure that stores the month, day, and
year.

• The time is also a structure, one that stores the hour, minute,
and second.

• This structure design is shown in this figure.

stamp.date.month stamp.date.sec

stamp.date stamp.time

June 2003 Computer Programming Day Two 302

Declaring Nested Structures

• It is possible to declare a nested structure with one
declaration, this approach is not recommended.

• It is far simpler and much easier to follow the
structure if each structure is declared separately and
then grouped in the high-level structure.

June 2003 Computer Programming Day Two 303

Declaring Nested Structures

• When declaring structures separately, the most
important point to remember is that nesting must be
done from inside out – from the lowest level to the
most inclusive level.

• In other word, the innermost structure must be
declared first, then the next level, working upward
toward the outer, most inclusive structure.

June 2003 Computer Programming Day Two 304

Declaring Nested Structures

• Consider the time stamp structure shown in this figure.

stamp.date.month stamp.date.sec

stamp.date stamp.time

June 2003 Computer Programming Day Two 305

Declaring Nested Structures

• The inner two structures, DATE and TIME, must be
declared before the outside structure, STAMP, is
declared.

• We show the declaration of STAMP and a variable
that uses it below.

struct DATE
{

int month;
int day;
int year;

};

struct TIME
{

int hour;
int min;
int sec;

};

struct STAMP;
{

DATE date;
TIME time;

};

STAMP stamp;

June 2003 Computer Programming Day Two 306

Declaring Nested Structures

• It is possible to nest the same structure type more than once in
a declaration.

• For example, consider a structure that contains start and end
times for a job.

• Using STAMP structure, we create a new declaration, as
shown below, and then define a variable that uses it.

struct JOB
{

…
STAMP startTime;
STAMP endTime;

};

JOB job;

June 2003 Computer Programming Day Two 307

Declaring Nested Structures

• The major advantage of declaring each of the
structures separately is that it allows much more
flexibility in working with them.

• For example, with DATE declared as a separate type
declaration, it is possible to pass the date structure to
a function without having to pass the rest of the
STAMP structure.

June 2003 Computer Programming Day Two 308

Referencing Nested Structures
• When you access a nested structure, you must include each

level from the highest (stamp) to the component being
referenced.

• The complete set of references for stamp is shown below.
• The last two references are to job.

stamp
stamp.date
stamp.date.month
stamp.date.day
stamp.date.year
stamp.time
stamp.time.hour
stamp.time.min
stamp.time.sec

job.startTime.time.hour
job.endTime.time.hour

June 2003 Computer Programming Day Two 309

Nested Structure Initialization

• Initialization of a nested structure follows the rules mentioned
for a simple structure.

• Each structure must be initialized completely before
proceeding to the next member.

• Each structure is enclosed in a set of braces.
• For example, to initialize stamp, first we initialize date, and

then time, separated by a comma.
• To initialize date, we provide values for month, day, and year,

each separated by commas.
• We can initialize the members of time.
• A definition and initialization for stamp is shown below.

STAMP stamp = { { 05, 10, 1936}, { 23, 45, 00 } };
June 2003 Computer Programming Day Two 310

Structures Containing Arrays

• Structures can have one or more arrays as members.
• The arrays can be accessed either through indexing or

through pointers, as long as they are properly
qualified with the member operator.

June 2003 Computer Programming Day Two 311

Declaring Arrays for Structures

• As we saw with nested structures, an array may be
included within the structure or may be declared
separately and then included.

• If it is declared separately, the declaration must be
complete before it can be used in the structure

June 2003 Computer Programming Day Two 312

Declaring Arrays for Structures

• To see an example
of this concept,
consider the
structure in this
figure, which
contains the student
identifier, three
midterm scores, and
the final exam score.

student.id student.midterm[1]

student.final

June 2003 Computer Programming Day Two 313

Referencing Arrays in Structures

• How we declared the structure, each element will
have the same reference.

• We refer to the structure first and then to the array
component.

• When we refer to the array, we can use either index
or pointer notation.

June 2003 Computer Programming Day Two 314

Referencing Arrays in Structures

• The index applies to elements within an array, so it must
follow the identifier of an array.

• In our student example, there is one array, an array of midterm
scores.

• Each of its elements can be referenced with an index, as shown
below.

student
student.id
// A pointer constant
student.midterm
student.midterm[j]
student.final

June 2003 Computer Programming Day Two 315

Referencing Arrays in Structures

• We have already shown how to refer to fields in a structure
using the selection operator ().

• When one structure contains an array, we can use a pointer to
refer directly to the array elements.

• For example, given a pointer to integer, pScores, we could
refer to the scores in student as shown on the following page.

pScores = student.midterm;
totalScores = *pScores + *(pScores + 1) + *(pScores + 2);

June 2003 Computer Programming Day Two 316

Array Initialization in Structure

• The initialization of a structure containing an array
simply requires extending the rules for structure
initialization to include the initialization of the array.

• The array is a separate member, its values must be
included in a separate set of braces.

• For example, the student structure can be initialized
as shown below.
STUDENT student = { 1234, { 92, 80, 70 }, 87 };

June 2003 Computer Programming Day Two 317

Structure Containing Pointers
• Not surprisingly, a structure can have pointers as members.
• In fact, pointers are very common in structures. The use of

pointers can save memory.
• For example, suppose that we wanted to record the daily sales

for a month.
• We could design a structure that contained an array of 31

floats, but the number of days ranges from 28 to 31, depending
on the month.

• Another design would use a pointer to an array of floating-
point variables that are dynamically allocated depending on
the number of days in the month.

June 2003 Computer Programming Day Two 318

Structure Containing Pointers

• This structure is shown in following figure.

June 2003 Computer Programming Day Two 319

Structure Containing Pointers
• The structure declaration is shown below.

struct monthlySales
{

float *sales;
intmonth;
intday;
intyear;

};

• Given a variable named may, we would then refer to a given
day as shown below.
may.sales + i

• In this case, i is the day of the month relative to zero.

June 2003 Computer Programming Day Two 320

Array of Structures

• As a programmer, you will encounter many situations
that require you to create an array of structures.

• To name just one example, you would use an array of
students when you are working with a group of
students and the data are stored in a structure.

• By putting the data in an array, you can quickly and
easily work with the data to calculate averages.

June 2003 Computer Programming Day Two 321

Array of Structures

• Let’s create an array to handle the scores for up to 50 students
in a class.

• This figure shows how such an array might look.

June 2003 Computer Programming Day Two 322

Array of Structures
• A structure is a type, you

can create the array just as
you would create an array
of integers.

• The code is shown below.
STUDENT stuAry[50];

• To access the data for one
student, you have to refer
only to the structure name
with an index or a pointer,
as shown below.
stuAry[i] *pStu

student.id student.midterm[1]

student.final

June 2003 Computer Programming Day Two 323

Array of Structures

• For example, let’s write a short segment of code to compute
the average for the final exam.

• We use a for loop since we know the number of students in
array.

int totScore = 0;
float average;
STUDENT *pStu;
STUDENT *pLastStu;
…
pLastStu = stuAry + 49;
for (pStu = stuAry; pStu <= pLastStu; pStu++)

totScore += pStu->final;
average = totScore / 50.0;

June 2003 Computer Programming Day Two 324

Array of Structures

• To access as individual
element in one of the
student’s arrays, such as the
second midterm for the fifth
student, you must use an
index or pointer for each
field, as shown below.

stuAry[4].midterm[1];

student.id student.midterm[1]

student.final

June 2003 Computer Programming Day Two 325

Array of Structures

• To access students’ midterms with pointers, you must
use one index or pointer for the array.

• You must have a second index or pointer for the
midterms.

• The code to compute the average for each midterm is
shown below.

• We use a separate array, midTermAvrg, to store the
average for the midterms.

June 2003 Computer Programming Day Two 326

Array of Structures
• In this example, we use indexes to access the midterms and

pointers to access the students.

float midTermAvrg[3];
int sum;
STUDENT *pStu;
STUDENT *pLastStu;
…
pLastStu = stuAry + 49;
for (i = 0; i < 3; i++)
{

sum = 0;
for (pStu = stuAry; pStu <= pLastStu; pStu++)

sum += pStu->midterm[i];
midTermAvrg[i] = sum / 50.0;

} // for i

June 2003 Computer Programming Day Two 327

Unions

• The union is a construct that allows a portion of
memory to be shared by different types of data.

• Imagine that we must use a construct that can hold
either an integer, a float, or a character, but not more
than one at the same time.

• For example, at one point in the program the data
might be a character and then later, in the same area,
the data might be an integer.

June 2003 Computer Programming Day Two 328

Unions

• This construct is shown in following figure.

Only four bytes used.
Two bytes wasted

Only one byte used.
Five bytes wasted

Six bytes used.
None wasted

June 2003 Computer Programming Day Two 329

Unions
• When a union is defined, C++

reserve enough room to store
the largest data object in the
construct.

• In this figure, the size of the
character is one, the size of the
integer is four, and the size of
the floating-point number is
six.

• C++ will always reserve six
bytes of storage for this
construct, regardless of what
type of data is currently stored
in it.

Only four bytes used.
Two bytes wasted

Only one byte used.
Five bytes wasted

Six bytes used.
None wasted

June 2003 Computer Programming Day Two 330

Unions
• The format for the union

should look familiar.
• With the exception of the

keywords struct and union,
these two structures are
syntactically identical.

• The results are dramatically
different.

• The declaration for the
union is shown in this figure.

Only four bytes used.
Two bytes wasted

Only one byte used.
Five bytes wasted

Six bytes used.
None wasted

June 2003 Computer Programming Day Two 331

Unions

• We use the member operator (.) to reference any of
the formats in the union.

• We did this because the union has the same form as
the structure, and we must tell C++ which member
we are referencing.

• In other words, all three members occupy the same
space, we still need to identify which type format we
are dealing with.

June 2003 Computer Programming Day Two 332

Unions

• The typical solution is to
provide an embedded
code in the structure to
indicate the type of data
present.

• Let’s modify our data
example to add a
category code we will
call form.

• The structure is shown
in this figure.

Identifies type of
data stored in union

June 2003 Computer Programming Day Two 333

Unions
• We implement this structure as shown below.

enum FORM { CH = 1, IN = 2, FL = 3};
union DATA
{

char first;
int second;
float third;

};

struct INFORMATION
{

FORM form;
DATE data;

};

INFORMATION information;
June 2003 Computer Programming Day Two 334

Unions

• First we create an enumerated type to give the forms
mnemonic names.

• We create a structure that declares the three different
types present.

• This structure is included in the INFORMATION
structure.

June 2003 Computer Programming Day Two 335

Unions

• When our program assigns data to the union, it must
also initialize the union’s form.

• The program must know what type of data it is
creating at any given point, this is not difficult.

• For example, assume that we are reading what we
know must be a piece of character data into the union.

• We would use the following code:
cin >> information.data.first;
information.form = CH;

