
1

Knowledge Update Course
for Secondary School Computer and IT Teachers

__

Computer Programming
Day Three

Jasper Wong
email: icjwong@polyu.edu.hk

Industrial Centre
The Hong Kong Polytechnic University

July, 2003

July, 2003 Computer Programming Day Three 2

Day Three Agenda
• Structured and Object Oriented Programming
• Basic Concepts of Object-Oriented Programming

– Objects, Data abstraction and Encapsulation
– Inheritance, Polymorphism
– Dynamic binding, Message passing

• Object-Oriented Programming
• Software Engineering

– Basic Concepts
– Waterfall Model
– Fountain Model
– Object-Oriented Analysis
– Prototyping Models

July, 2003 Computer Programming Day Three 3

Traditional Structured Approach

July, 2003 Computer Programming Day Three 4

Object-Oriented Approach

July, 2003 Computer Programming Day Three 5

Structural Programming

• Top-down programming approach
• The top-down design decomposes a problem into modules
• Each module is a self-contained collection of steps that solves one part of

the problem
• Most functions share global data
• Data moves around functions in the system
• Functions transform data in different forms
• Emphasis is on algorithms
• Structured Programming techniques

– Rules for writing procedures for creating logically correct programs
– For reducing logical errors
– Help to find and correct errors

July, 2003 Computer Programming Day Three 6

Object-Oriented Programming

• The essence of object-oriented programming is to treat data and
procedures that act upon the data as a single “object”

• The “object” is a self-contained entity with its own identity and
characteristics

• Emphasis is on data rather than procedures
• Objects are characterized by data structures
• Functions that operate on the data of an object are tied together in the data

structures
• Objects may communicate with each other through functions
• Easy to add new objects and functions
• Bottom-up programming approach

July, 2003 Computer Programming Day Three 7

Introduction to Objects

July, 2003 Computer Programming Day Three 8

Introduction to Objects

July, 2003 Computer Programming Day Three 9

Introduction to Objects

July, 2003 Computer Programming Day Three 10

Introduction to Objects

July, 2003 Computer Programming Day Three 11

Introduction to Objects

• Types of Objects in Computer Systems
– User Interface Objects
– Operating Environment Objects
– Task-Related Objects

• Document objects
• Multimedia objects
• Problem domain objects

July, 2003 Computer Programming Day Three 12

Object-Oriented Programming

• Objects
– Basic run-time entities in an object-oiented system
– May represent a person, a place, a bank account, a table of data or any

items that the program has to handle
– May represent user-defined data such as vectors, time and lists
– Programming problem is analyzed in terms of objects and

communication between objects
– Program objects are chosen so that they are related to real-world

objects
– Objects take up memory space

July, 2003 Computer Programming Day Three 13

Object-Oriented Programming

• Example

• Objects interact by sending messages to one another
• “customer” and “account” are two objects
• Customer object may send a message to account object requesting for the bank balance
• Each object contain data and code to manipulate the data
• Objects can interact without knowing details of other’s data or code
• It is sufficient to know the type of message accepted and the type of response returned by the

objects

July, 2003 Computer Programming Day Three 14

Object-Oriented Programming

• Classes
– Objects contain data , and code to manipulate that data
– The data and code of an object can be made a user-defied data type
– Objects are variables of the type class
– Once a class is defined, any number of objects can be created to the

class
– Each object is associated with the data of the type class
– A class is a collection of objects of similar type
– E.g. mango, apple and orange are members of the class fruit
– Classes are user-defined data types and behave as the built-in types
– E.g. Fruit mango;
– The statement create an object mango belonging to the class fruit

July, 2003 Computer Programming Day Three 15

Object-Oriented Programming

• Inheritance
– Is the process by which objects of one class acquire the properties of

objects of another class
– Supports the concept of hierarchical classification
– Provides the idea of reusability

• Add additional features to an existing class without modifications
• Deriving a new class from the existing class
• The new class combines features of the both classes
• Inheritance mechanism allows programmer to reuse a class

July, 2003 Computer Programming Day Three 16

Object-Oriented Programming

Property Inheritance

The bird “robin” is part of the class “flying bird” which is again a part of the class “bird”

July, 2003 Computer Programming Day Three 17

Object-Oriented Programming
• Polymorphism

– A Greek term, means the ability to take more than one form
– An operation may exhibits different behaviors in different instances
– The behaviors depends upon the types of data type used in the

operation
– The process of making an operator to exhibit different behaviors in

different instances is known as operator overloading
– A single function name to perform different types of tasks is known as

function overloading
– Allows objects having different internal structures to share the same

external interface general class of operation may be accessed in the
same manner even though specific actions associated with each
operation may different

July, 2003 Computer Programming Day Three 18

Object-Oriented Programming

Polymorphism

July, 2003 Computer Programming Day Three 19

Object-Oriented Programming

• Dynamic Binding
– Binding refers to the linking of a procedure call to the code to be

excuted in response to the call
– Dynamic binding or late binding is the code associated with a given

procedure call is not known until the time of the call at run-time

• Basic steps for OOP
– Creating classes that define objects and their behavior
– Creating objects from class definitions
– Establishing communication among objects

July, 2003 Computer Programming Day Three 20

Object-Oriented Programming

• Message Passing
– A message for an object is a request for execution of a procedure
– Invoke a function in the receiving object that generates the desired

result
– Message passing involves specifying the name of the object , the name

of the function (message) and the information to be sent

July, 2003 Computer Programming Day Three 21

Class

• A class is an extension of structure used in C
• A new way of creating and implementing user-defined data type
• C structures

– Provide a method for packing together data of different types
– Example:

Struct student
{

Char name[20];
Int roll_number;
Float total_marks;

};
– The structure name can be used to create variable of type student

Struct student A; //c declaration

July, 2003 Computer Programming Day Three 22

Class

• A is a variable of type student and has three member variables can be
accessed using the dot as follows:

Strcpy(A.name, “John”);
A.roll_number = 999;
A.total_marks = 595.5;
Final_total = A.total_marks + 5;

– C++ supports all features of structures as defined in C
– C++ has expanded its capabilities of OOP

July, 2003 Computer Programming Day Three 23

Class

• A class is a way to bind the data and its associate functions together
• Allows the data or function to be hidden from external use
• Defined by creating a new abstract data type
• Specified by two parts:

– Class declaration for describing the type and scope of its members
– Class function definitions for describing how the class functions are

implemented
• General form of a class declaration
class class_name
{ private:

variable declarations;
function declarations;

public:
variable declarations;
function declarations;

};
July, 2003 Computer Programming Day Three 24

Class

• Private members can be assessed only from within the class
• Public members can be accessed from outside the class
• By default, members of a class are private
• Variables declared inside the class are known as data members
• The functions are known as member functions
• Only member functions can access to the private data members and private

functions
• Public members functions and data, can be accessed from the outside class

July, 2003 Computer Programming Day Three 25

Class Example
class item
{

int number; // variables declaration
float cost; // private by default

public:
void getdata(int a, float b); // function declaration
void putdata(void); // using prototype

};

July, 2003 Computer Programming Day Three 26

Creating Objects
• Item is a class name
• A new type identifier used to declare instances of that class type
• The identifiers contains 2 data members and 2 function members
• Data members are private by default
• Functions are public by declaration, and not defined
• We create variable of the type by using class name

– Item x ; //memory for x is created
– Item x, y, z; // for more than one objects

• Objects can also created when a class is defined
Class item
{ ……

……

} x, y, z;

July, 2003 Computer Programming Day Three 27

Class Members
• Accessing class members

Format for calling member function
object-name.function-name (actual-arguments);

Example x.getdata (100,75.5); // 100 is the number, 75.5 is the cost
x.putdata();

•Defining member functions
– Outside the class definition, format:

return-type class-name :: function-name (argument declaration)
{

Function body
}

July, 2003 Computer Programming Day Three 28

Defining Member Functions

void item :: getdata(int a, float b)
{

number = a;
cost = b;

}

void item :: putdata(void)
{

cout << "Number :" << number << "\n";
cout << "Cost :" << cost << "\n";

}

July, 2003 Computer Programming Day Three 29

Defining Member Functions
• Inside the class definition
class item
{

int number;
float cost;

public:
void getdata(int a, float b); // declaration

// inline function

void putdata(void); // definition inside the class
{

cout << number << "\n";
cout << cost << "\n";

}
}

July, 2003 Computer Programming Day Three 30

Program With Class Example
(for reference)

#include <iostream.h>
using namespace std;
class item
{

int number; // private by default
float cost; // private by default

public:
void getdata(int a, float b); // prototype declaration, to be defined
// Function defined inside class
void putdata(void)
{

cout << "number :" << number << "\n";
cout << "cost :" << cost << "\n";

}
};

July, 2003 Computer Programming Day Three 31

Program With Class Example
(for reference)

//...... Member Function Definition

void item :: getdata(int a, float b) // use membership label
{

number = a; // private variables
cost = b; // directly used

}

July, 2003 Computer Programming Day Three 32

Program With Class Example
(for reference)

//...... Main Program
int main()
{

item x; // create object x
cout << "\nobject x " << "\n";
x.getdata(100, 299.95); // call member function
x.putdata(); // call member function
item y; // create another object
cout << "\nobject y" << "\n";
y.getdata(200, 175.50);
y.putdata();
return 0;

}

July, 2003 Computer Programming Day Three 33

Nesting of Member Functions
(for reference)

#include <iostream.h>

using namespace std;

class set
{

int m, n;
public:

void input(void);
void display(void);
int largest(void);

};

July, 2003 Computer Programming Day Three 34

Nesting of Member Functions
(for reference)

int set::largest(void)
{

if(m<=n)
return(m);

else
return(n);

}

void set::input(void)
{

cout << "Input values of m and n" << "\n";
cin >> m >> n;

}

July, 2003 Computer Programming Day Three 35

Nesting of Member Functions
(for reference)

void set:: display(void)
{

cout << "Largest values = "
<< largest() << "\n"; // calling member function

}

int main()
{

set A;
A.input();
A.display();

return 0;
}

July, 2003 Computer Programming Day Three 36

Private Member Functions
(for reference)

class sample
{

int m;
void read(void); // private member function

public:
void update(void);
void write(void);

};
s1.read(); // won't work; objects cannot access

// private members
void sample::update(void)
{

read(); // simple call; no object used
}

July, 2003 Computer Programming Day Three 37

Objects as Function Arguments
#include <iostream.h>
using namespace std;
class time
{

int hours;
int minutes;

public:
void gettime(inth, int m)
{

hours = h;
minutes = m;

}
void puttime(void)
{

cout << hours << " hours and ";
cout << minutes << "minutes " << "\n";

}
void sum(time, time); // declaration with objects as arguments

};

July, 2003 Computer Programming Day Three 38

Objects as Function Arguments
void time::sum(time t1, time t2) // t1, t2 are objects
{

minutes = t1.minutes + t2.minutes;
hours = minutes/60;
minutes = minutes%60;
hours = hours + t1.hours + t2.hours;

}

int main()
{

time T1, T2, T3;
T1.gettime(2,45); // get T1
T2.gettime(3,30); // get T2
T3.sum(T1,T3); // T3=T1+T2
cout << "T1 = "; T1.puttime(); // display T1
cout << "T2 = "; T2.puttime(); // display T2
cout << "T3 = "; T3.puttime(); // display T3
return 0;

}

July, 2003 Computer Programming Day Three 39

Friendly Functions
• Non-member function cannot have an access to the private data of a class
• C++ allows the common function to be made friendly with both classes and

allow the function have an access to the private data of these classes
• Format:

class ABC
{

.....

.....
public:

.....

.....
friend void xyz(void); // declaration

};

July, 2003 Computer Programming Day Three 40

Friendly Functions
#include <iostream.h>
using namespace std;
class sample
{

int a;
int b;

public:
void setvalue() {a=25; b=40; }
friend float mean (sample s);

};
float mean(sample s)
{

return float(s.z +s.b)/2.0;
}

July, 2003 Computer Programming Day Three 41

Friendly Functions

int main()
{

sample X; // object X
X.setvalue);
cout << "Mean value = " << mean(X) << "\n";

return 0;
}

July, 2003 Computer Programming Day Three 42

Constructors

• A constructor is a “special” member function whose task is to initialize the objects of its class
• Its name is same as the its class name
• The constructor is invoked whenever an object is created
• A constructor is declared and defined as follows:
// class with a constructor

class integer
{

int m, n;
public:

integer(void); // constructor declared
.....
.....

};
integer::integer(void) // constructor defined
{

m = 0; n = 0;
}

July, 2003 Computer Programming Day Three 43

Constructors
• A constructor guaranteed that an object created by the class will be initialized

automatically
integer int1: // object int1 created

• Not only creates the object int1 of type integer but also initializes its data
members m and n to zero

• A constructor that accepts no parameters is called default constructor
• for class A is A::A()
• If no such constructor is defined, the compiler supplies a default constructor
• Should be declared in the public section
• No return types and cannot return a value
• Cannot be inherited, though a derived class can call the base class constructor
• Can have default arguments
• They make “implicit calls” to the operator new and delete when memory

allocation is required

July, 2003 Computer Programming Day Three 44

Constructors
• Constructors can be passed with arguments to the constructor function when the

objects are created
• Two ways:

– By calling the constructor explicitly
Integer int1 = integer(0,100); // explicit call

– By calling the constructor implicitly
Integer int1(0,100); // implicit call

• Constructors with default arguments
complex(float real, float imag=0);
complex c(2.0, 3.0)

• Default constructor A::A()
• Default argument constructor A::A(int=0)

• Example:

July, 2003 Computer Programming Day Three 45

Constructors
#include <iostream.h>
using namespace std;
class integer
{

int m, n;
public:

integer(int, int); // constructor declared
void display(void)
{

cout << " m = " << m << "\n";
cout << " n = " << n << "\n";

}
};

integer::integer(int x, int y) // constructor defined
{

m = x; n= y;
}

July, 2003 Computer Programming Day Three 46

Constructors

int main()
{

integer int1(0,100); // constructor called implicitly

integer int2 = integer(25, 75); // constructor called implicitly

cout << "\nOBJECT1" << "\n";
int1.display();

cout << "\nOBJECT2" << "\n";
int2.display();

return 0;
}

July, 2003 Computer Programming Day Three 47

Multiple Constructors in a Class

• Overloaded Constructors
• Constructors 1, 2 and 3 can be used in the same class

class integer
{

int m, n;
public:

integer(){m=0; n=0} // constructor 1
integer(int a, int b)
{m = a; n = b;} // constructor 2
integer(integer & i)
{m = i.m; n = i.n;} // constructor 3

}

July, 2003 Computer Programming Day Three 48

Multiple Constructors in a Class

Example:

#include <iostream.h>
using namespace std;
class complex
{

float x, y;
public:

complex(){ } // constructor no arg
complex(float a) {x = y = a;} // constructor-one arg
complex(float real, float imag) // constructor-two args
{ x = real; y = imag;}
friend complex sum(complex, complex);
friend void show(complex);

};

July, 2003 Computer Programming Day Three 49

Multiple Constructors in a Class

void show(complex c) // friend
{

cout << c.x << " + j" << c.y << "\n";
}
complex sum(complex c1, complex c2) // friend
{

complex c3;
c3.x = c1.x + c2.x;
c3.y = c1.y + c2.y;
return(c3);

}

July, 2003 Computer Programming Day Three 50

Multiple Constructors in a Class

void show(complex c) // friend
{

cout << c.x << " + j" << c.y << "\n";
}
complex sum(complex c1, complex c2) // friend
{

complex c3;
c3.x = c1.x + c2.x;
c3.y = c1.y + C2.y;
return(c3);

}

July, 2003 Computer Programming Day Three 51

Multiple Constructors in a Class
int main()
{ complex A(2.7, 3.5); // define & initialize

complex B(1.6); // define & initialize
complex C;
C = sum(A, B); // sum() is a friend
cout << "A = "; show(A);// show() is also friend
cout << "B = "; show(B);
cout << "C = "; show(C);

// Another way to give initial values (second method)
complex P,Q,R; // define P, Q and R
P = complex(2.5,3.9); // initialize P
Q = complex(1.6,2.5); // initialize Q
R = sum(P,Q);
cout << "\n";
cout << "P = "; show(P);
cout << "Q = "; show(Q);
cout << "R = "; show(R);
return 0;

}

July, 2003 Computer Programming Day Three 52

Dynamic Initialization Of Object
(for reference)

// Long-term fixed deposit system
#include <iostream.h>

using namespace std;

class Fixed_deposit
{

long int P_amount; // Principal amount
int Years; // Period of investment
float Rate; // Interest rate
float R_value; // Return value of amount

public:
Fixed_deposit(){ }
Fixed_deposit(long int p, int y, float r=0.12);
Fixed_deposit(long int p, int y, int r);
void display(void);

};

July, 2003 Computer Programming Day Three 53

Dynamic Initialization Of Object
(for reference)

Fixed_deposit::Fixed_deposit(long int p, int y, float r)
{

P_amount = p;
Years = y;
Rate = r;
R_value = P_amount;
for(int i = 1; i <= y; i++)

R_value = R_value * (1.0 +r);
}
Fixed_deposit::Fixed_deposit(long int p, int y, int r)
{

P_amount = p;
Years = y;
Rate = r;
R_value = P_amount;

for(int i=1; i<=y; i++)
R_value = R_value*(1.0+float(r)/100);

} July, 2003 Computer Programming Day Three 54

Dynamic Initialization Of Object
(for reference)

void Fixed_deposit::display(void)
{

cout << "\n"
<< "Principal Amount = " << P_ amount << "\n"
<< "Return Value = " << R_value << "\n";

}

July, 2003 Computer Programming Day Three 55

Dynamic Initialization Of Object
(for reference)

int main()
{ Fixed_deposit FD1, FD2, FD3; // deposits created

long int p; // principal ammount
int y; // investment period, years
float r; // interest rate, decimal form
int R; // interest rate, percent form
cout << "Enter amout, period, interest rate(in percent)" << "\n";
cin >> p >> y >> R;
FD1 = Fixed_deposit(p,y,R);
cout << " Enter amout, perio, interest rate(decimal form): << "\n";
cin >> p >> y >> r;
FD2 = Fixed_deposit(p,y,r);
cout << "Enter amout and period: << "\n";
cin >> p >> y;
FD3 = Fixed_deposit(p,y); FD2.display();
cout << "\nDeposit 1"; cout << "\nDeposit 3";
FD1.display(); FD3.display();
cout << "\nDeposit 2"; return 0;
}

July, 2003 Computer Programming Day Three 56

Destructors

• A destructor is used to destroy the created objects by its constructor
• Destructor is a member function with name same as the class name but

is preceded by a tilde ~integer() { }
• Never takes any argument nor does it returns any value
• Will be invoked implicitly by the compiler upon exit from the program

or function to clean up storage that no longer accessible
• Whenever new is used to allocate memory in the constructors, delete

should be used to free memory

July, 2003 Computer Programming Day Three 57

Destructors

#include <iostream.h>
using namespace std;
int count = 0;
class alpha
{
public:

alpha()
{

count++;
cout << "\nNo. of object created " << count;

}

~alpha()
{

cout << "\nNo. of object destroyed " << count;
count--;

}
};

July, 2003 Computer Programming Day Three 58

Destructors

int main()
{

cout << "\n\nENTER MAIN\n";

alpha A1, A2, A3, A4;
{

cout << "\n\n"ENTER BLOCK1\n';
alpha A5;

}

{
cout << "\n\nENTER BLOCK2\n";
alpha A6;

}
cout << "\n\nRE-ENTER MAIN\n";

return 0;
}

July, 2003 Computer Programming Day Three 59

Inheritance: extending class

• Reusability is an import features of OOP
• Reuse something is better than create something
• Save time and money, reduce frustration and increase reliability
• In C++, once a class is created, it can be adapted by other programmers
• The mechanism of deriving new classes from an old one is called

inheritance
• The old class is called the base class and the new one is called the

derived class or subclass
• Derived class inherits some or all of the traits from the base class
• A class can inherit properties from more than one class or from more

than one level
• A derived class with only one base class is called single inheritance, and

one with several base classes is called multiple inheritance

July, 2003 Computer Programming Day Three 60

Inheritance: extending class

July, 2003 Computer Programming Day Three 61

Defining Derived Classes
General Form:
Class derived-class-name : visibility-mode base-class-name
{

……....//
………// members of derived class
………//

};
Example:
Class ABC: private xyz // private derivation
{

members of ABC
};
Class ABC: public xyz // public derivation
{

members of ABC
};

July, 2003 Computer Programming Day Three 62

Defining Derived Classes

Class ABC: XYZ //private derivation by default
{

members of ABC
};

• Private members of a base class will never become the members of its derived
class

• Inheritance can be used to modify and extend the capabilities of the existing
classes

July, 2003 Computer Programming Day Three 63

Single Inheritance (public)

#include <iostream.h>
using namespace std;
class B
{

int a; // private not inheritable
public:

int b; // public; ready for inheritance
void get_ab();
int get_a(void);
void show_a(void);

};
class D:public B // public derivation
{

int c;
public:

void mul(void);
void display(void);

};

July, 2003 Computer Programming Day Three 64

Single Inheritance (public)

void B::get_ab(void)
{ a=5; b=10;
}
int B::get_a()
{ return a;
}
void B::show_a()
{ cout << "a = " << a << "\n";
}
void D::mul()
{ c= b * get_a();
}
void D::display()
{ cout << "a = " << get_a() << "\n";

cout << "b = " << b << "\n";
cout << "c = " << c << "\n\n";

}

July, 2003 Computer Programming Day Three 65

Single Inheritance (public)

int main()
{

D d;

d.get_ab();
d.mul();
d.show_a();
d.display();

d.b = 20;
d.mul();
d.display();

return 0;
}

July, 2003 Computer Programming Day Three 66

Single Inheritance (public)

Adding more members to a class by public derivation

July, 2003 Computer Programming Day Three 67

Single Inheritance (private)

#include <iostream.h>
using namespace std;
class B
{

int a; // private; not inheritable
public:

int b; // public; ready for inheritance
void get_ab();
int get_a(void);
void show_a(void);

};
class D : private B // private derivation
{

int c;
public:

void mul(void);
void display(void);

};

July, 2003 Computer Programming Day Three 68

Single Inheritance (private)

void B::get_ab(void)
{ cout << "Enter values for a and b:";

cin>> a >> b;
}
int B::get_a()
{ return a;
}
void B :: show_a()
{ cout << "a = " << a << "\n";
}
void D::mul()
{ get_ab();

c = b * get_a(); // 'a' cannot be used directly
}
void D::display()
{ show_a(); // outputs value of 'a'

cout << "b = " << b << "\n"
<< "c = " << c << "\n\n";

}

July, 2003 Computer Programming Day Three 69

Single Inheritance (private)

int main()
{

D d;

// d.get_ab(); WON'T WORK
d.mul();
// d.show_a(); WON'T WORK
d.display();

// d.b = 20 WON'T WORK; b has become private
d.mul();
d.diaplay();

return 0;
}

July, 2003 Computer Programming Day Three 70

Single Inheritance (private)

Adding more members to a class by private derivation

July, 2003 Computer Programming Day Three 71

Making A Private Member Inheritable

• A member declared as protected is accessible by the member functions within
its class and any class immediately derived from it.

• It cannot be accessed by the functions outside these two classess
class alpha
{
private: //optional

..... // visible to member functions

..... // within its class
protected:

..... // visible to member functions

..... // of its own and derived class
public:

..... // visible to all functions

..... // in the program

July, 2003 Computer Programming Day Three 72

Effect of Inheritance on Visibility of Members

Class B

July, 2003 Computer Programming Day Three 73

Visibility of Inherited Members

ProtectedPrivatePublicPublic --- >

ProtectedPrivateProtectedProtected --- >

Not inheritedNot inheritedNot inheritedPrivate --- >

Protected
Derivation

Private
Derivation

Public
Derivation

Base class
visibility

July, 2003 Computer Programming Day Three 74

Multilevel Inheritance

• A derived class with multilevel inherited is declared as follows:
class A {….}; // Base class
class B: public A {…..} ; // B derived from A
class C: public B {…..} ; // C derived from B

• The process can be extended to any number of levels

July, 2003 Computer Programming Day Three 75

Multilevel Inheritance

#include <iostream.h>

class student
{
protected:

int roll_number;
public:

void get_number(int);
void put_number(void);

};
void student::get_number(int a)
{

roll_number = a;
}
void student::putnumber()
{

cout << "Roll Number: " << roll_number <, "\n";
}

July, 2003 Computer Programming Day Three 76

Multilevel Inheritance

class test : public student // First level derivation
{
protected:

float sub1;
float sub2;

public:
void get_marks(float, float);
void put_marks(void);

};
void test::get_marks(float x, float y)
{

sub1 = x;
sub2 = y;

}
void test::putmarks()
{

cout << "Marks in SUB1 = " << sub1 << "\n";
cout << "Marks in SUB2 = " << sub2 << "\n";

}

July, 2003 Computer Programming Day Three 77

Multilevel Inheritance

class result : public test // Second level derivatikon
{

float total; // private by default
public:

void display(void);
};

void result::display(void)
{

total = sub1 + sub2;
put_number();
put_marks();
cout << "Total = " << total << "\n";

}

July, 2003 Computer Programming Day Three 78

Multilevel Inheritance

int main()
{

result student1; // student1 created
student1.get_number(111);
student.get_marks(75.0, 59.5);

student1.display();

return 0;
}

July, 2003 Computer Programming Day Three 79

Multiple Inheritance

A derived class with multiple base classes is declared as follows:
Class D: visibility A, visibility B
{

………….
…………. (Body of D)
………….

};

Where visibility may be either public or private

July, 2003 Computer Programming Day Three 80

Multiple Inheritance

#include <iostream.h>
using namespace std;
class M
{
protected: int m;
public: void get_m(int);
};
class N
{
protected: int n;
public: void get_n(int);
};
class P : public M, public N
{
public: void display(void)
};

July, 2003 Computer Programming Day Three 81

Multiple Inheritance

void M::get_m(int x)
{

m = x;
}

void N::get_n(int y)
{

n = y;
}

void P::display(void)
{

cout << "m = " << m << "\n";
cout << "n = " << n << "\n";
cout << "m*n = " << m*n << "\n";

}

July, 2003 Computer Programming Day Three 82

Multiple Inheritance

int main()
{

P p;

p.get_m(10);
p.get_n(20);
p.display();

return 0;
}

July, 2003 Computer Programming Day Three 83

Polymorphism

• Means “one name, multiple forms”
• Implemented using overloaded functions or operators
• Information of the overloaded member functions is known to the

compiler at the compiler time for selecting the appropriate call function.
This is called early binding or static binding or static linking, also
known as compile time polymorphism

• If appropriate member function is selected while the program is
running. It is known as run time polymorphism

• At run time, when it is considering the class objects, the appropriate
function is invoked. The function is linked with a particular class much
later after compilation, the process is called late binding, or dynamic
binding.

July, 2003 Computer Programming Day Three 84

Polymorphism

July, 2003 Computer Programming Day Three 85

Polymorphism

#include <iostream.h> // Pointers to Objects
using namespace std;
class item
{

int code;
float price;

public:
void getdata(int a, float b)
{

code = a;
price = b;

}
void show(void)
{

cout << "Code : " << code << "\n";
cout << "Price: " << price << "\n";

}
};
const int size = 2;

July, 2003 Computer Programming Day Three 86

Polymorphism
int main() // Pointers to Objects
{

item *p = new item [size];
item *d = p;
int x, i;
float y;
for(i=0; i<size; i++)
{ cout << "Input code and price for item" << i+1;

cin >> x >> y;
p->getdata(x,y);
p++;

}
for(i+0; i<size; i++)
{ cout << "Item: " << i+1 << "\n";

d->show();
d++;

}
return 0;

}

July, 2003 Computer Programming Day Three 87

Software Engineering

• Basic Concepts
• Software Process Models
• Waterfall Model
• Fountain Model
• Object-Oriented Analysis
• Prototyping Models

July, 2003 Computer Programming Day Three 88

Hardware Failure

• Here is the bathtub curve.
• It represents hardware failure rate as a function of time
• Design and manufacturing faults cause parts to fail early, defects are

corrected and failure rate stays low for some period then rises as dust,
vibration, wear and abuse accumulate

July, 2003 Computer Programming Day Three 89

Software Failure

• Software does not wear out, so its curve should look like this
• Unfortunately, software maintenance involves change
• Each change will increase the likelihood of failures

July, 2003 Computer Programming Day Three 90

Software Failure

• Changes introduce new flaws
• The failure rates of the new and existing components are cumulative
• We need to design and build it correctly the first time to reduce the need for

changes later
• We need to build it in a maintainable way

July, 2003 Computer Programming Day Three 91

Cost of Poor Design

• Reliability is not the only reason to design software correctly
• The cost of change increases dramatically through the project

July, 2003 Computer Programming Day Three 92

Common Myth

• A general statement of objectives is sufficient to begin writing
programs, we can fill in the details later

• The reality
– Poor up front definition is a major cause of failed software

development
– Formal and detailed description of the domain, function,

performance, interfaces and validation criteria is essential
– You can only create these after thorough communication between

customer and developer

July, 2003 Computer Programming Day Three 93

Software Engineering

• The difference between software engineering and programming is that
software engineering is concerned with the complete lifecycle of the
software, from initial proposal to retirement

• Programming is merely a task that is performed during some parts of
the process

• Software engineering is the establishment and use of sound
engineering principles in order to obtain economical software that is
reliable and works efficiently on real machines

• Software engineering encompasses a set of three key elements:
methods, tools and procedures

July, 2003 Computer Programming Day Three 94

Structured Charts

• Primary design tool for a program
• An analogy that helps you understand the importance of

designing before coding
• Used also as a program review process called a structured

walk-through
– Ensures that you understand how your program fits into the system

by communicating the design to the team
– Validates the design
– Ensures that the final program will be robust and as error-free as

possible

July, 2003 Computer Programming Day Three 95

Structured Charts: Rules and Symbols

• Each rectangle represents a function written

July, 2003 Computer Programming Day Three 96

Reading Structured Charts

• Example:

July, 2003 Computer Programming Day Three 97

Reading Structured Charts

• Top-down, from left to right
• Three subfunctions: Initialize, Process, and EndOfJob
• First call: Initialize
• After Initialize is complete, calls Process
• After Process is complete, calls EndOfJob

Structured Charts show only function
flow; they contain no codes.

July, 2003 Computer Programming Day Three 98

Reading Structured Charts

• Often a program will contain several calls to a common
function

• A cross-hatch or shading in the lower right corner of a
rectangle identifies a common function

• If the common function is complex and contains
subfunctions, these subfunctions need to be shown only
once

July, 2003 Computer Programming Day Three 99

Reading Structured Charts

• Example:
– average is a common function in two different places of the

program
– The subfunctions are omitted and replaced by a cut (~) symbol

after appearing once

July, 2003 Computer Programming Day Three 100

Summary of rules

1. Each rectangle in a structured chart represents a function
written by the programmer. Standard C++ functions are
not included.

2. The name in the rectangle is an intelligent name that
communicates the purpose of the function. It is the name
that will be used in the coding of the function.

3. The function chart contains only functions flow. No code
is indicated.

July, 2003 Computer Programming Day Three 101

Summary of rules

4. Common functions are indicated by a cross-hatch or
shading in the lower right corner of the function
rectangle.

5. Common calls are shown in a structured wherever they
will be found in the program. If they contain subfunction
calls, the complete structure need to be shown only once.

6. Data flows and flags are optional. When used, they
should be named.

7. Input flows and flags are shown on the left of the vertical
line; output flows and flags are shown on the right.

July, 2003 Computer Programming Day Three 102

Data Flow Diagram (DFD)

• Most basic diagrams in software development
• Shows the flow of the data among a set of components
• Components:

– Tasks
– software components
– abstractions of functionality

July, 2003 Computer Programming Day Three 103

Rules of DFD

1. Boxes and processes must be verb phrases
2. Arcs represent data and must be noun phrases
3. Control is not shown. Some sequencing may be inferred

from the ordering
4. A process may be a one-time activity, or it may imply a

continuous processing
5. Two arcs coming out a box may indicate that both

outputs or only either one output of the two are produced

July, 2003 Computer Programming Day Three 104

Notations used in DFD

external
entity

data
item

A producer or
consumer of
information

A transformer
of information

July, 2003 Computer Programming Day Three 105

Notations used in DFD

• Example: The software retrieves the user’s password based
on the identity claimed by an unknown user and compares
it against an entered password from the unknown user. A
message stating the decision will be shown.

July, 2003 Computer Programming Day Three 106

Entity Relationship Diagram

• A graphical representation of an organization’s data
storage requirements.

• Abstractions of the real world
• Simplifies the problem to be solved

July, 2003 Computer Programming Day Three 107

Entity Relationship Diagram

• Usage:
– Identify the data that must be captured, stored and retrieved in

order to support the business activities performed by an
organization

– Identify the data required to derive and report on the performance
measures that an organization should be monitoring

• Three different components:
– Entities
– Attributes
– Relationships

July, 2003 Computer Programming Day Three 108

Entities

• Anything which an organization needs to store data about
• Represented on the diagram by labelled boxes

July, 2003 Computer Programming Day Three 109

Entities

• Represents collections of things
• Example:

– an EMPLOYEE entity might represent a collection of all
employees that work for an organization.

– Individual members (employees) of the collection are called
occurrences of the EMPLOYEE entity.

• The available space for naming the entity is restricted to
the size of the box

• Entities should always have detailed descriptions
– Short paragraphs of text describing the entity
– A lengthy description may be required for some important entities

July, 2003 Computer Programming Day Three 110

Attributes

• Entities are further described by their attributes
• Sometimes also known as data elements
• Smallest units of data can be described in a meaningful

manner
• Example:

July, 2003 Computer Programming Day Three 111

Relationships

• A meaningful relationship exists between two different
types of entity
– EMPLOYEEs work in a DEPARTMENT
– LAWYERs advise CLIENTS
– EQUIPMENT is allocated to PROJECTs
– TRUCK is a type of VEHICLE

• Three types of relationship:
– One-to-One Relationships
– One-to-Many Relationships
– Many-to-Many Relationships

July, 2003 Computer Programming Day Three 112

One-to-One Relationship

• A single occurrence of an entity related to just one
occurrence of a second entity

• Example:
– A ROOF covers one BUILDING;

a BUILDING is covered by one ROOF
– Shown on the diagram by a line

connecting the two Entities

July, 2003 Computer Programming Day Three 113

One-to-Many Relationships

• Takes place when a single occurrence of an entity is
related to many occurrences of a second entity

• Example:
– An EMPLOYEE works in one DEPARTMENT; a

DEPARTMENT has many EMPLOYEEs
– Shown on the diagram by a line connecting the

two entities with a crows feet symbol denoting
the “many” end of the relationship

July, 2003 Computer Programming Day Three 114

Many-to-Many Relationships

• Takes place when many occurrences of an
entity are related to many occurrences of a
second entity

• Example:
– EQUIPMENT is allocated to many PROJECTs; a

PROJECT is allocated many times of
EQUIPMENT

– Shown on the diagram by a line connecting the two
entities

July, 2003 Computer Programming Day Three 115

Entity Sub-Types

• Useful to generalize about a group of Entities which have
similar characteristics

• Example:
– a VEHICLE is a generalization of a CAR, a TRUCK and a

MOTORCYCLE.
– a CAR is a specialized type of VEHICLE
– a TRUCK is a specialized type of VEHICLE
– a MOTORCYCLE is a specialized type of VEHICLE

July, 2003 Computer Programming Day Three 116

Entity Sub-Types

• Two common styles to show Entity Sub-Types

July, 2003 Computer Programming Day Three 117

Subject Areas

• Subdivide a large, complex entity relationship diagram into a
number of Subject Areas

• Each Subject Area focuses on a single aspect of the problem
• Example:

– A model depicting the Human Recourse data required by an
organization should be subdivided in to the following Subject Areas

– Recruitment
– Safety
– Payroll
– Restoring

July, 2003 Computer Programming Day Three 118

Software Development

• Software Engineering Methods
– Software engineering methods provide the technical “how to’s” for

building software
– Methods encompass a broad array of tasks that include:

• Project planning & estimation
• System and software requirement analysis
• Data structure design
• Program architecture
• Algorithm procedure
• Coding
• Testing
• maintenance

July, 2003 Computer Programming Day Three 119

Software Development

• Software Engineering Tools
– Software engineering tools provide automated or semi-automated

support for methods. When tools are integrated so that information
created by one tool can be used by another, a system for the
support of software development, called computer-aided software
engineering (CASE), is established

• Software Engineering Procedures
– Procedures define the sequence in which methods will be applied,

the deliverables (documents, reports, forms and etc) are required
– The controls that help assure the quality and coordinate change,

and the milestones that enable software managers to assess
progress

July, 2003 Computer Programming Day Three 120

Software Development

• There exist a number of Software Engineering Paradigms
• The selection of a paradigm depends on the nature of the application,

the programming language used, and the controls and deliverables
required

• The development of a successful systems depends on the use of
appropriate methods, techniques and the developer’s commitment to
the objectives of the system

July, 2003 Computer Programming Day Three 121

Software Development

• A successful system must:
– Satisfy the user requirements
– Be easy to understand by the users and operators
– Be easy to operate
– Have a good user interface
– Be easy to modify
– Be expandable
– Have adequate security controls against misuse of data
– Handle the errors and exceptions satisfactorily
– Be delivered on schedule within the budget

July, 2003 Computer Programming Day Three 122

Procedure-Oriented Paradigm

Waterfall Model (classic software development life cycle)

July, 2003 Computer Programming Day Three 123

Procedure-Oriented Paradigm

• Problem Definition
– Requires a precise definition of the problem in user term
– A clear statement of the problem is important to the success of the

software
– Helps developer and user to have better understanding of the problem

• Analysis
– Detailed study of users’ requirement and software

• Inputs, processes, outputs, constraints
• Design

– System design concepts: data structure, software architecture and
algorithm

– Translates the requirements into software representation

July, 2003 Computer Programming Day Three 124

Procedure-Oriented Paradigm

• Coding
– Translate design into machine code
– More detailed design, the easier to code and the better its reliability

• Testing
– Twst for correctness of the code and rsults
– Involve each individual unit and the system
– Require a detailed plan to what, when and how to test

• Maintenance
– Ensures changes due to user’s requirement, operating environment or

software bugs

July, 2003 Computer Programming Day Three 125

Water-fall Model life Cycle Output

• maintenance log sheets
• version documents

Maintenance

• tested code
• test results
• system manual

Testing (what and how)

• program document
• test plan
• user manual

Coding (how)

• Design documentation
• Test class design

Design (how)

• Requirement document
• Feasibility report
• Specifications document
• Acceptance test criteria

Analysis (what)

• Problem statement sheet
• Project request

Problem definition (why)

OutputPhase

July, 2003 Computer Programming Day Three 126

Object-Oriented Paradigm

• Draws heavily on the general systems theory as a conceptual
background

• A system can be viewed as a collection of entities that interact together
to accomplish certain objectives

• Entities represent physical objects such as equipment and people, and
abstract concepts such as data files and functions

• Emphasis on the objects that encapsulate data and procedures
• Objects play the central role in all stages of software development
• Exists a high degree of overlap and iteraction between stages
• “Fountain Model” in place of the classic “Water-fall” model”

July, 2003 Computer Programming Day Three 127

Object-Oriented Paradigms

July, 2003 Computer Programming Day Three 128

Fountain Model

Inter-relationship of entities

July, 2003 Computer Programming Day Three 129

Fountain Model

• Development reaches a higher level only to fall back to a previous level and then again
climbing up

• Object-Oriented analysis (OOA) refers to the methods of specifying requirements of the
software in terms of real-world objects, their behavior and their interactions

• Object-Oriented design (OOD) turns software requirement into specifications for objects
and derives class hierarchies from the created objects

• Object Oriented programming (OOP) refers to the implementation of the program using
objects

• A clear and well-organized statement of the problem is built into the application after
developing specifications of the objects in the problem space

• The objects form a high-level layer of definitions
• Other objects are identified during the refinement of the application objects
• All phases work closly. One phase, problem domain objects are identified while additional

objects are specified in next phase. The design process is repeated

July, 2003 Computer Programming Day Three 130

Object Specification Layers

July, 2003 Computer Programming Day Three 131

Object-Oriented Analysis

• Provides us with a simple, powerful, mechanism for identifying objects, the
building block of the software to be developed

• Is concerned with the decomposition of a problem into its component parts and
establishing a logical model for the system functions

• Steps:
– Understand the problem
– Write user requirement and software
– Identifying objects and their attributes
– Identifying the object services
– Establish inter-connections between the objects for services required and

rendered.

July, 2003 Computer Programming Day Three 132

Object-Oriented Analysis

July, 2003 Computer Programming Day Three 133

Object-Oriented Analysis

• Objects Identification for real-world objects and abstract objects
• Looking for objects by analyzing the applications
• Data Flow Diagram

– Indicating data flow from one point to another in the system
– The boxes and data stores are objects
– The process bubbles corresponding to the procedures

July, 2003 Computer Programming Day Three 134

Data Flow Diagram

Order processing and shipping for a publishing company

July, 2003 Computer Programming Day Three 135

Data Flow Diagram

Fundamental Data Flow Diagram

July, 2003 Computer Programming Day Three 136

Prototyping Paradigm

• Real-world application problems are complex, structure is too large to
work out the precise requirement

• Build and test a working model of the system before working on the
complete system

• The model is known as prototype, and the process is prototyping
• Object-Oriented analysis and design approach is evolutionary and is

suitable for prototyping paradigm
• A prototype is a scaled down version of the system and may not have

stringent performance and criteria and resource requirement
• Developer and customer need to agree a “outline specifications” of the

system for the prototype

July, 2003 Computer Programming Day Three 137

Prototyping Paradigm

• The prototype is built and evaluated for its performance
• Prototype provide the experimental evaluation of the system structure,

internal design, hardware requirements and the final system requirements
• Benefits of using prototype approach:

– Produce understandable specifications which is almost correct and
complete

– User can understand what is offering
– Maintenance changes can be minimized
– Developer can work on a set of tested and approved specifications

July, 2003 Computer Programming Day Three 138

Prototyping Paradigm

July, 2003 Computer Programming Day Three 139

Rapid Prototyping

July, 2003 Computer Programming Day Three 140

Spiral Life Cycle Model

July, 2003 Computer Programming Day Three 141

Operational Specification

July, 2003 Computer Programming Day Three 142

Reference
1. B.W. Kenighan, D.M. Ritchie, “The C Programming Language”, 2nd Edition, Prentice Hall, 1998.
2. Clovis L. Tondo, Scotte Gimpel, “ The C Answer Book, Solutions to the Exercises in the C

Programming Language, Second Edition by Brian W. Kernighan”, @nd Edition, Prentice Hall, 2000.
3. Behrouz A, Forouzan, “ Computer Science: a structured programming approach using C”, 2nd Edition,

Brooks/Cole, 2001.
4. Byron Gottfried, “Schaum’s Outlines Series - Programming with C”, 2nd Edition, McGraw Hill, 1996.
5. John R. Hubbard, “Schaum’s Outlines Series - Programming with C++”, 2nd Edition, McGraw Hill, 2000.
6. David Gustafson, “Schaum’s Outlines Series - Software Engineering”, 1st Edition, McGraw Hill, 2002.
7. R. Johnsonbaugh, Martin Kalin, “Object-Oriented Programming in C++”, 2nd Edition, Prentice Hall,

2000.
8. John W. Satzinger, “The Object-Oriented Approach: Concepts, System Development, and Modeling

with UML”, 1st Edition, Prentice Hall, 2001.
9. E. Balagurusamy, “Object-Oriented Programming with C++”, 2nd Edition, MCGraw Hill, 2001.
10. David Gustafson, “Theory and problems of Software Engineering”, McGraw-Hill, 2002.
11. Roger S. Pressman, “Software Engineering: A practitioner’s Approach”, 5th edition, McGraw-Hill, 2001.
12. http://msdn.microsoft.com
13. http://www.compilers.net/Dir/Free/Compilers/CCpp.htm
14. http://www.mit.edu/iap/cccc/c-refcard-letter.pdf
15. http://www.acm.uiuc.edu/webmonkeys/book/c_guide/
16. http://www.cs.colorado.edu/~eliuser/c_html/c.html#s1

