Knowledge Update Course Q
for Secondary School Computer and IT Teachers Q@V

Computer Programming
Day One

Jasper Wong
email: ig|wonp@polyy.edu.hk

Industrial Centre
The Hong Kong Polytechnic University

June, 2003

Day One Agenda

Programming Languages
Programming Tools and Development
C++ Fundamentals

C++ Program Structure

C++ Functions

C++ Control Structures

AN S e

June 2003 Compater Programmming Cay One

Software Evolution n\mvv

June 2003 Computer Programming Day One

Programming Languages

Machine languages
Assembly Languages

Procedural Programming
Object-Oriented Programming
High Level Languages

Tune 2003 Computer Programming Day One

Machine Languages Q\MW

* The only language that a computer can understand

* The “Natural language” of a computer

* Defined by hardware or machine-dependent

* Consists of strings of 0s or 1s

* Instruct computers to perform elementary operations

* Cumbersome for humans

* Examples: + 3100042777, + 1500693421 or +2100384036

* For human being, we have different number systems
€.g. Positive numbers, negative numbers, floating point
numbers, hexadecimal numbers, Boolean numbers

June 2003 Computer Programming Day One

Procedural Programming @

b Main Program 4

June 2003 Computer Programmiing Day One

Procedural Programming A\WW

Function

* Local data

June 2003 Computer Programming Day Cne

Procedural Programming %

* Top-down programming approach
* The top-down design decomposes a problem into
modules

* Each module is a self-contained collection of steps
that solves one part of the problem

» Most functions share global data

* Data moves around functions in the system
*» Functions transform data in different forms
» Emphasis is on algorithms

June 2003 Computer Programming Day Cne

Object-Oriented Programming AOOE&W

Object A Object B

June 2003 Computer Programming ~ Day One]

Object-Oriented Programming @

* The essence of object-oriented programming is to treat data
and procedures that act upon the data as a single “object”

* The “object” is a self-contained entity with its own identity
and characteristics

* Emphasis is on data rather than procedures
* Objects are characterized by data structures

* Functions that operate on the data of an object are tied together
in the data structures

* Objects may communicate with each other through functions
* Easy to add new objects and functions
* Bottom-up programming approach

June 2003 Computer Programiring Day One 10

Basic Object Oriented Terms @

* Object
— We abstract real world objects into types — people, buildings, cars or food.

— All objects have a couple of things in common: they have attributes and
behaviors

— Attributes are data about the object

* For example, a person has name, a height, a hair color..
~ Behaviors are things the object can do

* For example, a person can walk, talk, juggle..

— To use an object-oriented design approach to a programming problem, we must
consider:

* what the objects are in the system,
* what attributes they have, and
* how their behaviors work together to make the system work

June 2003 Computer Programming Day Cma 1"

Basic Object Oriented Terms

- In OOP we model real world objects with software counterparts
— We can take advantage of medelling similar things as a class of objects
* My bike is a specific object; bike is a class of objects
~ We can use specialized versions of things with inheritance
+ ¢.g. alecturer is an employee with some additional behaviors and
attributes
* Encapsulation and Information (data) hiding

- With OOP, we can encapsulate the behaviors (functions) and attributes (data)
of an object into a ¢lass

— Objects support the concept of information hiding: they have a clearly defined
interface but the implementation is hidden (and may therefore be changed)

June 2003 Computer Programming Day Cne 12

Basic Object Oriented Terms @

» Class

— A class is like a blue print, out of a blue print, a builder can build a
house. Out of a class, a programmer can create an object

— One blueprint can be reused many times to make many houses; one
class can be reused to make many objects of the same class

— Although Class objects can communicate with one another across well-
defined interfaces, the implementation details are hidden within classes

- Wmnw ﬂ_mmm contains data as well as the set of functions that manipulate

eda

— The data components of a class are called data members

— The function components of a class are called member functions or
methods

— It support inheritance relationships where newly created classes of
objects derived by absorbing characteristics of existing classes and

adding unique characteristics of their own.

June 2003 Computer Programming Day One 13

High Level Languages n@v

Similar to everyday English
* Use common mathematical notations

Single statements accomplish substantial tasks

— Assembly language may require many instructions for the
same tasks

Compilers or Interpreters convert high level program
to machine language program

Example: Profit = Revenue - Cost

June 2003 Computer Programming Day One 14

High Level Languages n\‘mw

* Fortran

— FORmula TRANGlator, created by IBM in the period:
1954-1957

— Scientific and engineering applications
« COBOL
— Common Business Oriented Language created in 1959.
~ Was designed to look rather than like normal English
— A language for business and commerce
— Precise and efficient manipulation of large amounts of data

— It is falling out of use due to many Y2K non-compliant
systems were written in COBOL and have been replaced

June 2003 Computer Programming ~ Day One 15

High Level Languages @

* Pascal

— 1971, developed by Prof. Niklaus Wirth

— Efficient to implement and run

— Allow for well structured and organized programs

— It is designed to teach computer programming techniques
» Basic

— 1964, two professors: John Kemeny and Thomas Kurtz

— Simple and easy for beginners, general-purpose

— Several hundred versions, especially for home computers

June 2003 Computer Programming Day One 16

High Level Languages @

* Visual Basic

— In 1988, Alan Cooper, the father ‘father of Visual Basic’,
sold the “drag-and-drop” shell prototype called Tripod to
Bill Gates.

— Tripod was then developed to Visual Basic,
— Visual Basic is a Windows based programming language
— Power features

— GUI, event handling, Object-oriented programming, error
handling

~ Visual Basic.Net

June 2003 Computer Programming Day One 17

High Level Languages n“m\v

+ Java

June 2003

1991: Sun Microsystems, a green project

1995: Sun formally announced Java at the trade show

Integrated into major Web Browsers

Provides a standard OO language for network

Provide applications for consumer devices: cell phones, pages, PDA

An object-oriented programming language with substantial library
support for

+ Interactive graphical applications
* Image handling

* Networking

+ Threads

« Exception detection and handling

Syntax of C, C++
Computer Programming Day Cne 18

C Language &W

* Evolved from B programming language by Dennis Ritchie at
Bell Laboratories

* Was originally implemented on DEC PDP-11 computer in
1972

* Uses many important concepts of the BCPL & B programming
languages with added data typing

* Development language of Unix

* Hardware independent and portable to most computers

* 1989: American National Standards Institute ANSI standard
* 1990: ANSI/ISO 9899:1990

Tune 20603 Computer Programming Day One 18

Tune 2003

C and C++ language @

ALGOL

—
ALGOL-

-

Pascal
i

Modula-2 _
N I
Modula-3

Computer Programming Day One 20

Why C++ Language ? @

» C++ offers fast, small programs developed in a robust and
portable environment.

» Evolved from C with extended OO features for QO
programming

+ (C++is a superset of C and that virtually any legal C program
is a legal C++ program

¢ ANSI C++ is just another way of saying “standard” C++, that
is portable to any platform and any development environment

» (C++ has now become the most successful, practical, general
purpose QOP language, and is widely used in industry today.

» C++ development tools are highly available in the market
— facilitates the development of complex commercial applications

June 2003 Computer Programming Day One 21

C++ Language @

» Extension of C

» Was developed by Bjarne Stroustrup in early 1980 at
Bell Laboratories
» “Spruces” up” the C language
» Capabilities for object-oriented programming
— Reusable software components
* Model real world items
— Easy to understand, correct and modify
Hybrid language
— C-like style, Object-oriented style

June 2003 Computer Programmming Day Cme 22

Visual C++ Language n\mw

* Microsoft’s implementation of C++
— Includes extensions
— Microsoft Foundation Classes (MFC)
- Common library
» GUI, graphics, networking, multithreading
* Shared among Visual Basic, Visual C++ and C#
+ Microsoft.net platform
— Web-based applications

+ Distributed to a great variety of devices: mobile phones,
PDA

— Applications in disparate languages can communicate

June 2003 Computer Programming Day One 23

Visual C# Language ..,%\.v

= Developed Anders Hejlsberg and Scott Wiltamuth of
Microsoft

» Designed for Microsoft.net platform

* Roots in C, C++ and Java, migrated easily to .Net

» Event driven, fully object-oriented, visual programming
language

+ Integrated Development (IDE)

— Create, mun , test and debug C# programs
— Rapid application development (RAD)

+ Language interpretability

June 2003 Compuber Programming Day One 24

Differences Between C and C++ @

* C++ include Object-Oriented Programming Function.

* “Class” Key Word
~ The main difference between C++ and C is that of objects.

— Cis limited to the basic types of int, float, char, and
double, along with some variations on those types.

— C++ is able to create new types that store data and
functions and operate on that data together. These new
types are defined using the “class™ keyword.

Tune 2003 Computer Programiuing Day Cne 25

Differences Between C and C++ @

Subject Standard C C++
printd"Hello Woeld'n"), cout <= "Hello World!” << endl;
Console 1/O B eanf(tia™. ey e mam
ncg-.-.—ﬁ:ﬁm * comment */ M comment
File extensions G H C. H, CPP, HPP
File I/O out = fopen("autput_file.dat”, "wb") ofstream out(*output_file dat");

in = fopen("input_file.dat™, "rb"};

ifsream in(*input_file dat™};

tent = {char *) malloc(1000),

Dynamic Memory

text = new char{1 000,

C/C++ and Pascal @

* Both Pascal and C are high-level languages.
Nevertheless, C is closer to Assembler than Pascal.

* In C, itis possible to do Assembler-like operations in
a way that is similar to normal C programming.

* InC, itis possible to change the value of pointers (i.e.
the memory-location they are pointing to) by
arithmetical operations. This is not possible in Pascal.

« Cis powerful in handling instructions e.g. iteration
and memory allocation, programmers usually like to
use C

June 2003 Computer Progtamming Day One 27

free(text); delete [] text;
oeﬁmﬁﬂn—nm #define PL3.14159 const Moar Pl = 314159,
Macros #define MAX({a b} {(a) > (b) ? {a) - (b)) “u=_q=wn _._“_.. —z._:xn_._: &, intb) { rearn a >
June 2003 Compuler Programming Day Crne 26
C and Pascal Similarities @
* Declaration of variables
Variables may not be declared after a statement in a
procedure is executed.
Paecal {in VAR part).
PROCEDURE Nothing;
VAR i, j: INTEGER;
BEGIN Pascal
Writeln{'And nocthing happena...'};
END,
C [before atatemental
void Nething(veoid)
{
W”de‘m Hmhhn nething happens...yn'}; O
o
June 2003 Computer Programming Day One 28

C and Pascal Similarities @

» Compound statements
Compound statements are multiple statements put
together to be treated as a single one.

Papcal (BEGIN, END}:

POR § := 1 TO 20 DO
BEGIN
3w de i Pascal
Writeln {i, J);

END;

c i, I

far {i=1:i<=20;ie¢+)

{
i o+= 1i; O

printf(=%d *d", i, 3);

Pascal and C Similarities @

» Easy declaration of pointers
Pointers can be declared like ‘normal’ variables are.

Pagcal.
Pascal
VAR

PIr: MNTEGER:

C:

{ im-pi

June 2003 Computer Programming ~ Day One 30

June 2 u 29
L] - » -
C and Pascal Similarities
» User-defined data structures.
Pascal: c
v Pascal C
TPersonal = RECORD MﬂnHMM MWM“MM_”.P_.
Number: INTEGER; char z.wan_wo?
Name: STRING[30]; :
Addresg: STRING[40]; MW”M meﬂw_mm [s01:
21P: STRING[7) 1 i
END;
VAR
X main(}
mmmMMnmou_ Tpereonal; { struct TPersonal Perscn;
PerSon.Name c= 'RuCger van Bergen’; w.”.wnnimnnoou.zgn. "Rutger van Bergent):
END. !
June 2003 Computer Programming Day One i

Differences Between C and Pascal %m\v

+ Legibility of statements
Pascal statements and operations are more close to
English than their C equivalents.

* Legibility of code
Some Pascal statements are structured in a more
readable manner than their C equivalents.
For example, the purpose the Pascal code FOR 1:=1
TO 20 serves will be easier to imagine than for the C
code

for (i=1;i<=20;i++).

June 2003 Computer Programming Day One 3z

Differences Between C and Pascal @

Structural symbols

Pascal has more rules concerning structural symbols
than C.

In Pascal there are several rules as to where
statement-separators (€.g. semi-colons, dots) are
necessary, allowed or forbidden. If one of these rules
is not exactly followed the compiler will refuse to
compile the program. In C, there are basically just
two rules on the use of statement separators.

June 2003 Computer Programming Day One 33

June 2003

Differences Between C and Pascal &W

Automatic assignment conversion

Pascal demands greater attention to be paid to the use
of variables, especially if variables of different types
are used in assignments.

For example, if you try to assign a real value to an
integer variable, Pascal will treat this as a lethal error
and abort compilation. C will just give a warning,
auto-convert the real value to an integer one and
continue compiling.

Computer Programming Day One 34

Comment on C and Pascal @

Pascal, compared to C, is closer to a natural language

C is so abstract it is harder to learn programming in C
than it is in Pascal.

Because of the similarities between the two, Pascal is
an obvious choice to learn the concepts of
programming before leaming to use those in C.

Pascal is good for education purposes

C, in most cases, is good for industrial/commercial
applications

June 2003 Computer Programming Day One as

»

Programming Tools &\V

Compiled Vs Interpreted Languages
Development Environment

Editors, Compilers and Linkers
Development Cycle

June 2003 Computer Programming Day One 36

Compiled vs. Interpreted Languages @

» Compiled languages are completely converted into
machine code (once) and then it is run (many times).
The process of conversion is called compilation

* During the compilation, the compiler repeats the
compilation several times to optimize the compiled
codes, and usually results an efficient codes.

» Compiler needs a longer time to compile the codes

» Interpreted languages are converted into machine
language on a line by line basis each time they are run
(slower)

June 2003 Computer Programming Day Cne 37

Compiled vs. Interpreted Languages A\WW

» Interpreter is fast in code conversion, but the codes
may not be optimized.

» Most programs are written in compiled languages (e.g.
C, C++ or Visual Basic)

+ Web programming is often done in interpreted
languages (e.g. PHP, ASP, Cold Fusion)

« Java is both compiled (to an intermediary stage) and
interpreted (on a specific machine). This is why it is
cross-platform, and is usually slower than purely
compiled languages.

June 2003 Computer Programming Day One 38

Typical C++ Environment Q>

s (C++systems
~ Program develeopment environment
— Langunage
— C++ Standard Library
+ Input/output
— cin
+ Standard input stream, normally keyboard
- cout
+ Standard output stream, normally screen
- CceImr
» Standard error stream, display error messages

June 2003 Computer Programming Day One 39

Program Development A“wwv

» Edit

— Program is created in the editor and stored on disk
« Preprocess

— Preprocessor program processes the code
» Compile

— Compiler creates object code and stores it on disk

Tune 2003 Computer Programming Day {ne 40

Program Development A\m\v

» Link
— Linker links the object code with the libraries, creates
a.cout and stores it on disk

* Load

— Loader puts program in memory

» Execute

— CPU takes each instruction and executes it, possibly storing
new data values as the program excites

June 2003 Computer Programming Day One 41

Program Development @

11 071 1 0 01 01 DOOCH (1 4001 0
il [ulntule Rl Rlofule Ryl It

l..m..:&go._o._.__o_o._gis

Jupe 2003 Computer Programming Day Cne 42

Compiler and Editor A%W

» A compiler can have its own built-in text editor, or
you use a commercial text editor or word processor
that can produce text files. The important thing is that
whatever you write your program in, it must save
simple, plain-text files with no word processing
commands embedded in the text.

June 2003 Computer Programming Day One 43

Compiler and Editor @

» The files you create with your editor are called source
files, and for C++ they typically are named with the
extension .cpp, .cp, Or .C.

» Most C++ compilers don’t care what extension you
give your source code, but if you don’t specify
otherwise many will use .cpp by default.

June 2003 Computer Programming Day One 44

Compiler and Editor @

* Your source code file is not a program, and it can't be
executed, or run, as a program can.

* To turn your source code into a program, a compiler
is used. How you invoke your compiler and how you
tell it where to find your source code will vary from
compiler to compiler.

June 2043 Computer Prograrming Day One 45

Compiling and Linking &W

» The compilation process is responsible for creating object .obj
filtes and other intermediate files. The VC++ compiler
CL.EXE takes all project files as input to generate .obj files
for them.

* The linker LINK.EXE to take the .obj files and other
intermediate files as input and generate the final .exe. The
build process first runs the compiler and then the linker. To
generate an executable, you should build the project. If you
compile only the file then an .obj file is generated.

June 2003 Computer Programming Day One 46

Linking A Program @

» After your source code is compiled, an object file is produced.
This file is often named with the extension .obj. This is still
not an executable program, however. To turn this into an
executable program, you must run your linker.

+ The steps to create an executable file are:

1. Compile the source code into a file with the .obj extension.

2. Link your OBJ file with needed libraries to produce an
executable program,

June 2003 Computer Programming Day One 47

Compiling and Linking &\v

>

Source File Header File
(Test.cpp) {Test.h)

Object File
{Test.obj)

!
Other OBJ Flles _|._ Linker _
!

_ TestProgram.exe ﬁ

June 2003 Computer Progamming Day One 45

The Development Cycle

Every program worked the first
time you tried it, that would be
the complete development
cycle:

June 2003 Computer Programming

Day One

EHSE

iii

i
3

T

A2 R

&

48

Program Codes

&

* The basic element of a program is function.

» A function is composed by :

1. Return Type

3. Input parameters

June 2003 Computer Programming

2. Function name

4.

Day One

Program codes
enclosed by the

opening and closing

brackets

51

Program Codes @

: #inglude <iostream.hs

1

2

3: int mainig)

4: |

5 cout << “Helle World!\n¥;
§ return 0; The actual program
7

=}

Actual program :
* Every C++ program must have the main() function.
* It is the beginning point of every C++ program.

Tune 2003 Computer Programming Dray Ome 50
Program Codes abw\.v
3: int main() Send the string
:
M" cout <« “Hello World!\n"; mo:o iﬁvn‘gm H,o ﬂ—_—ﬂ
> , e Standard output

Return an integer 0

* In console mode,
the standard output is to the outside world

just the console, or the DOS prompt.

» In C++, character string is represented by a sequence of
characters enclosed by “ .

* \nis a special character that represents newline.

June 2003 Computer Programming Day One 52

Program Structure

Preprocessor
Directives

int main (void)

int fun ()

{

}

June 2003

Computer Programming Day Cne

&

53

Program Structure n_\.a.v

 Functions consists of two types of code
— Declarations

* describe the data used in the program

» global declaration is visible to any part of the program

* local declaration is only visible within the defined
function

— Statements

* instructions for performing something,
* e.g. add two numbers.

June 2003

Computer Programming Day Ooe

55

Program Structure

» C++ program consists of two sections:
— global declaration section
— functions

* A function called Main is unique in a program
— usually coded first in a program
- should be organized for readability

June 2003

Computer Programming Pay One

Program Structure

\ Preprocessor command to
include inputfoutput strearm
mformation for your program.

#inciude <iostream.h>

int main (void) 7

{
_\\.‘ K
cout << “Hello Worldtn" -7 .m

retum 0;

} |

June 2003

Compater Programming Day One

&

56

Program Structure @

no global declarations, 7+ greeting program */

no local declarations. #include <iostream h>

int main (void)

. i 1 {
print a greeting to the user. #/ Local Declarations

. / Statements
.H.dc.o m_ﬁﬁogoﬂa. cout << *Hello World'n™

— Prints a greeting retumn 0;

} 4/ main

— Stops the program

June 2003 Computer Programming Day One 57

Preprocessor :

3
4
5:
6
7

Program Structure

T #include <iostream. HU/

; int main{)

{

_ Preprocessor —

cout << *Hello Worldi\n*;

return 0;

}

» Instruct to the compiler on how to compile the program
» Will not generate machine codes
+ Start with a pound (#) symbol

Tune 2003

Computer Programming Day One

&

Program Structure @

#include <iostream. h>

* When compiling a file we need to obtain the definitions of
some terms in the program codes

* These definitions are recorded in some header (.h) files
* These files are shipped with the compiler or other resources

» #include tells the compiler where to find the header files and
insert this file to that location of the program.

e.g. #include <iostream.h> tells the compiler it should get
the file iostream.h thru default path

e.g. #include “iostream.h” tell the compiler it should get the
file iostream.h in the current directory.

June 2003 Computer Programming Day One 50

Keywords

Refers to some reserved words

They are explicitly reserved identifiers

&

Cannot be used as names for the program variables or
other user-defined program elements

Examples:

if, while, for, double, else, float, etc

June 2003

Computer Programming Day One

Identifiers @

* Refer to the names of variables, functions, arrays, classes, etc
created by a programmer

* Fundamental requirement of any languages
» Each languages has its own rules for naming identifiers
* For Cand C++

— Only alphabetic characters, digits and underscores are
permitted

— Names cannot start with a digit

— Uppercase and lowercase letters are distinct

— A declared keyword cannot be used as a variable name
— Valid Names — a, student name, aSystemName

— Invalid Names - $sum, 2names, studnt name, int
June 2003 Cormputer Programming Day One &1

Comments A\WW

« Comments are WOH // This is a single line comment.

HUH.OW.HNE . /* This is a comment that covers
documentation. two lines. */
 The compiler /*

*+ It is a very common style to put
** the gpening token on a line by
** jteelf, followed by the

** documentation and then the

ignores comments
* two formats:

— Block comment ** gloping token on a separate line.
* % ** Some programmers also like to
/* abed ¥/ *% put asterisks at the beginning
— Line comment ** of esach line to clearly mark the
** comment .
/f abed iy
June 2003 Computer Programming Day One

62

Comments @

* Comment is ignored by the compiler.

* Not affect the program execution but only improve
readability.

* The double-slash (//) tells the compiler to ignore
everything after the slash till the end of the line. It
refers the C++ style comments.

» The slash-star (/) tells the compiler to ignore
everything after the slash-star until it finds a star-

slash (*/). It refers the C-style comments. It applies to
C++, as C++ inherited them from C.

June 2003 Computer Programming Day Cme 83

Comments &W

1 #include <iostream.h>

9 Output:

3 int main(}

4 { Hello World!
S: /* this is a comment That comment ended!
[and it extends until the cloaind

ki star-slash comment mark =/

B cout << “Hello World!\n-";

9 // this comment ends at the end of the line

10: cout <« “That comment ended!”;

11:

12: // double slash comments can be alone on a line
13: /* as can slash-star comments */

14: return 0:

15: }

June 2003 Computer Programming Day One

Variables &

* are named memory locations that have a type, such as
integer or character but not void type, and have size

* have a set of operations that can be used to change or
manipulate them
» Each variable must be declared and defined.
— Declaration is used to name an object, such as a variable.
— Definitions are used to create the object.

» With a few exceptions, a variable is declared and
defined at the same time.

June 2003 Cormputer Programming Day One

65

Variables &W

» A Variable is a place to store information
+ Ttis a location (or series of locations) in the memory.

* The name of a variable can be considered as a label of
that piece of memory. We declared a variable named
myVariable.myVariable starts at memory

address 103.

e

Variables &W

* Declaration of a vanable will assign a symbolic name
to the vanable.

variable's

varable’s type
P identifigr

\

char code ;

intl;

long national_debt ;
float payRate ;
double pi ;

bool valld ;

variahle’s
identifier

June 2003 Computer Programming Day One

67

Address
e P)
00 gt vers[103) 104 105 106
June 2003 Computer Programming ~ Day One 86
Variables @
» Examples:
shortint maxItems; /{ Word separator: Capital
longint national_debt // Word separator: Underscore

float payRate; // Word separator: Capital
double tax;

char code;

bool valid;

int a, b; // Poor style-see text

June 2003 Computer Programming Day One 68

Variables &

» Variable declaration and initialization
— int count = Q;
— int count, sum = 0;
— int count = 0, sum = (;
* When a variable is defined, it is not initialized. The
programmer must initialize any variable requiring
prescribed data when the function starts.

June 2003 Computer Frogramming Day One 69

Size of Variables AAMW

* Inmemory, all data are the same.
(‘1” and ‘0, byte by byte)

* Depend on how we interpret the data, different kinds of
variables can be identified in the memory.

Type Size Values
unsigned short int 2 bytes 0 to 65,535
short int 2 bytes -32,768 to 32,767
unsigned long int 4 bytes 0 to 4,294,967,295
long int 4 bytes -2,147 483,648 to0 2,147,483,647

| char 1 byte 256 character values_
bool 1 byte true or false
float 4 bytes 1.2e=38 to 3.4e38
double B bytes 2.2¢-308 o 1.8e308

June 2003 Computer Programming Day One 70

Good variable names @

* Good variable names tell you what the variables are stand for,
you need fewer comments during coding.

Example 1 Example 2

main{) ” main()

{ {
unsigned short x; unsigned short Width;

unsigned short y; unsigned short Length;

unsigned int z; unsigned int Area;
zZ =X % y; Area = Width * Length;
June 2003 Computer Programming Day One 71

Case Sensitivity @

» (C++is case sensitive. Uppercase and lowercase
letters are considered to be different.

=% =+ =]

June 2003 Computer Programming Day One 72

Creating Variables @

e Creating multiple variable of the same type in one
statement by writing the type and then the variable
names, separated by commas.

For example:

unsigned int myAge, myWeight; // two unsigned int
variables

long area, width, length; // three longs

» Creating and initialize a variable
unsigned short Width = 5;

June 2003 Computer Programming Day One 73

Use of Variables

/{ Demonstration of variables
#include <iostream.h>

int main()

£
unsigned short int Width = 5, Length,
Length = 10;

000 1 Gth b b

// create an unsigned short and initialize with result
{/f of multiplying Width by Length
10: unsigned short int Area = Width * Length;

12: cout << *Width:” << Width << “n";
13: cout << “Length: << Length << endl;
14: cout << “Arga: 7" << Area << endl;

15 return O

June 2003 Computer Programming Day Cne

&

Output:

Width: 5
Length: 10
Area: 50

74

Data Types n“a%

* Built-in Types
— Fundamental Types
+ Integral Types

—Boolean
» bool

—Characters
» Char, unsigned char, signed char, wchar t

—Integers

» Short int, unsigned short int, signed short int, int,
unsigned int, signed int, long int
— Void Type

* void
June 203 Computer Programming Day One T2

Data Types

» Derived Types
— Arrays
— Pointers
— References
» User-Defined Types
—~ Enumeration Types
— Structured Types
* Classess
+ Structures
* Unions

June 2003 Computer Programming Day One

76

June 2003

Integer Q\MV

integer type represents as an integral number.
three different integer sizes:

— short int or short

— int

— long int, or long

integer type can be signed or unsigned

a bit is assigned for signed integer (0 is plus, 1 is
minus).
unsigned integer is twice as large as the signed
integer

Computer Programming Day One 77

Integer

* a: some computers use 48, 64 or more bits

&

Tune 2003

Floating Point &W

» A floating-point type is a number with a fractional
part, such as 43.32.

* The C++ language supports three different sizes of
floating-point data types:

— Float

— Double

— Long double

Computer Programming Day Cne 79

Type Sign Byic Number of Minimum Maximum
Size Bits Value Value

short int Signed -32768 32768
int Signed 2 16 -32768 32767
(pc) unsigned 0 65535
int signed -2147483648 2147483647
(mainframe) | unsigned 4 32 0 4294967295
Long int Signed -2147483648 2147483647

unsigned 4 32a 0 4294967295
June 2003 Computer Programming Day Cne 78

Floating Point @

* The relationship among the floating-point types is
shown in figure.

float

double

long double

June 2003

Computer Programming

Day One

Floating Point @

* The physical size of floating-point types is machine
dependent, many computers support the sizes shown
in table.

char/bool/void &W

* Char use half of the ASCII
— The letter a is binary 01100001,
— The letter x is binary 01111000.

* bool type with values 1 (true) and 0 (false)

* void type has no values and no operations, both set of
values and set of operations are empty

June 2003 Cotaputer Programming Day Crne 82

Type Byte Size Number of Bits
Float 4 32
Double 3 64
Long double 10 80
June 2063 Computer Programnting Day One 81
typedef @

* In some situations, the name of a type may be too
tedious to write and read.

* C++ provides a keyword typedef that allows one to
make an alias name to the standard type

For example:

typedef unsigned short int USHORT

June 2003 Computer Programming Day One o 83

Constants @

Unlike variable, constants cannot be changed.
» The value of a constant will be fixed until the end of
the program.

* Two types of constants

— Literal Constants — build-in the language

— €.g. anumber say 39 (You cannot assign a value to 39)
Symbolic Constants

— like variables, user define a special name as a label to it.

— unlike variables, it cannot be changed once it is initialized.

June 2003 Computer Programming Dy One -

Defining Symbolic Constants @

A symbolic constant can be defined in two ways

Old way — use keyword #define

#define studentPerClass 87

* No type needs to be defined for studentpPerclass

* Preprocessor just replaces the word studentperclass
with 87 whenever it is found in the program

June 2003 Computer Programming ~ Day Cne a5

Constants

» Constants cannot be changed in values during

program execution
» Constant types:
— Integer
— floating-point
— Character
— String
— and Boolean constants

June 2003 Computer Programiming Day One

&

88

Integer constants &vv

* Integers are stored in
type signed integer, or

long integer depending | Literal | Value Type

on the size of the number.) 123
* It can be overridden by

int

. . -378 -378 |int
specifying unsigned (u or "

U) and long (1 or L) after | -32271 | -32271 [long int

the number. 76542LU | 76542 | unsigned long int

* The codes may be
combined in any order.

June 2003 Computer Programming Day One) a7

Float Constants

&

» Float constants are Literal Value Type
numbers with decimal 0. 0.0 double
parts.

. 0 0.0 double

» Stored in memory as

go Hum.HH” 2.0 2.0 double
— significand 3.1416 31416 | double
— The exponent

-2.0f -2.0 float

* default float constant
is type double 3.1415926536L | 3.1415926536 | long double

June 2003 . . Computer Programming . Day One &8

Character Constants @

* A character constant is enclosed in single quotes.

* there can be a backslash (\) or escape character
between the quote marks.

* escape character represents special character that
cannot be printed.

June 2003 Computer Programming Day One 8¢

ASCII Character Set

&

» Special characters ASCII Character

Symbolic Narme

Null character

A0’

Alert (bell)

./m.

Backspace

b’

Horizontal tab

A

Newline

./—.—-

Vertical tab

W'

Form feed

A

Carrtage retum

)H.

Single quote

s...:

backslash

.//-

June 2003 Computer Programming Day One

Constants @

/7 A null string

» String Constants
“p?
“Hello World!\n”
“Good Morning!”
“’Good’ Morning!”
“N"Good\” Moming!”

// “‘Good’ Moming
/1 “Good” Moming

« for double quote “Good”, write it as \"Good\”

* bool constants is the Boolean type with values true

and false.
June 2003 Computer Programming Day One . m

Coding Constants

» three different ways to code constants:
— Literal constants
— Defined constants
— Memory constants

June 2003) Computer Programmming. Day One

a2

Literal Constants @

* unnamed constant to specify data.
* code the data value itself in a statement

* Examples
. ‘A’ /[a character literal
5 // numeric literal 5
1+5 // another numeric literal (5)
3.1416 // a float literal
“Hello” // a string literal
Tune 2003 Computer Programming Day One 23

Defined Constants @

* use the preprocessor command define to designate a
constant.

» Example
. #define SALES TAX RATE .0825

* Define usually placed at the beginning of the program,
but is legal anywhere.

» Easy to find and change

Tune 2003 Computer Programming Day One 84

Memory Constants n\‘mW

* Use a type qualifier to assign a constant data
* Give a type and size to a named object in memory.

* Examples:
const float pi = 3.1416;

June 2003 . Computer Programming Day One) g5

Why do we need constants? @

» Help debugging the program.
Compiler will automatically check if a constant is
modified by the program later

* Improve readability.
Give the value a more meaningful name
E.g. rather than writing 360, can use degreeInACircle

» Easy modification

If a constant really needs to be changed, we only need to
change a single line

.. . June2003 L Computer Programming = Day One L 96

Enumerated Constants AAMW

* Enumerated constants allow one to create a new type that
contains a number of constants

enum COLOR { RED, BLUE, GREEN, WHITE, BLACK };

Makes COLOR the name of the new type
Set RED =0, Blue = 1, GREEN = 2, WHITE = 3, BLACK =4

* Another example

enum COLOR2 { RED=100, BLUE, GREEN=500, WHITE, BLACK=700 };

* Makes CCLOR2 the name of the new type
* Set RED = 100, BLUE = 101, GREEN = 500, ¥HITE = 501, BLACK =700

June 2003 Computer Programming Day One a7

Data Input/Qutput n\‘mv\v

data input into/out from a program is a stream of bytes being
moved to/from a program and a physical device.

Data entered into the C3+ program through the keyboard in
form of a sequence of characters. C++ interprets the type and
changes the data into the appropriate form.

+ System automatically defines three standard files

~ keyboard is the standard input file ¢in,

- console is the standard output file, cout

— Console or printer is associated with the standard error file, cerr

* Use insertion operator (<<} to send data to cout, cout <<

variable
= Use extraction operator {>>) to receive data from cin, ¢in >>
variable
June 2003 Computer Programming ~ Day One 98

Standard Files %mw

cin

1

standard input stream

R ey S

T =]

I

June 2003 Computer Programming Day One 89

Standard Files &\v

 The standard input file is an input stream that holds
input character sequence until one complete line has
been received.

* Can backspace and change the input sequence before
pressing the enter key.

* Need data conversion when display non-text data

CoL Jume2003 Compuier Programming ~ Day One . 10¢

Expressions @

* asequence of operands and operators that reduces to a single
value,

* Example:
2 * 5 > expression whose value is 10
* value can be any type other than void

* An operator is a language-specific syntactical token that
requires an action to be taken

* Example: multiply (*) is an operator
* There may be one, two, or more operands.

* No limit to the number of operator and operand sets in an
expression.

June 2003 Computer Programming Day One 104

Primary Expressions @

* most elementary type of expression
* consists of only one operand with no operator.

* operand can be:
— aname
— a constant
— a parenthetical expression.

June 2003 Computer Programming Dy One . 103

Expressions n\w%

* seven different expression formats

Primary _ identfier, constant, or panantheticai expression

Pastfix

Unary

Binary

Temary* mxu@_ _ exXpression
Assignment kr _ o..x..usaw_o_._

| expression

Comma* _ expressicn

* These expression types are unique to the C Language

June 2003 Computer Programming Day Cne 102

Names @

* any identifier for a variable, a function, or any other
object
* Examples (used as primary expressions):
—a
- bl2
— price
— calc
~ INT_MAX
— SIZE

June 2003 Computer Programming Day One _ 104

Constants @

* second type of primary expression
* value can’t change during execution of program

* Examples of constants:
— 5
— 12398
— A
- “Welcome”

June 2003 Computer Programming Day One 105

Parenthetical Expressions @

« final type of primary expression
* any value enclosed in parentheses must be reducible
to a single value

* complex expression can be enclosed in parentheses to
make it a primary expression.

* Examples:
—(2*3+4)
~(a=23+b*6)
June 2003 Computer Programming Day One 106

Binary Expressions &Vv

* operand-operator-operand combination

» Examples:
-1+2
-15-3
—4%*6
—-16/4
—-24%5

CJune2003 Computer Programming ~ Day One _ _ 107

Multiplicative Expressions @

* first level of binary expressions

* Multiply, divide, and modulus operators have the
highest priority among the binary expressions

* evaluated first among the binary expressions

.. June2003 . Computer Programming ~ Day Ong . 108

Multiplicative Expressions Q\M\v

* multiply (*) expression
=>product of the two operands
* divide (/) expression
— if both operands are integers - the integral value of the
quotient, expressed as an integer.
— if either operand is a floating-point number = a floating-
point number in a type that matches the higher format of
the operands (float, double, or long double)

Tune 2003 Computer Programming Day One 109

Multiplicative Expressions A\m\v

* modulo (%) expression

— remainder of division of the two operands

— Both operands must be integer types

— operator returns the remainder as an integer type.
« Examples:

— 3% 2 evaluates to 1

— 5 % 3 evaluates to 2

June 2003 Camputer Programuring Day One 110

Multiplicative Expressions A‘MW

* Summary:
* Result is algebraic multiplication of two
operands.

/ Result is algebraic division of first operand by
second operand:
* integer quotient if both operands are integer.

* Floating-point quotient of either operand is a floating-
point number.

% Result is integer remainder after first operand is
divided by second operand. Both operand must be
integer types.

June 2003 nnqac_nq?cm_.wﬂ_a:m. DayOne 11

Multiplicative Expressions %\v

* Example of multiplication binary expressions

Integer Float
Multiplication: | 4 * 5 | Multiplication:| 3.8 * 5.3
Value:| 20 Value:| 20.14
Division:| 26/6 Division:| 26/6
Value: 4 Value:| 4.333333
Module: | 26 % 6
Value: 2

.. June 2003 L Computer Programming ~ Day One . . . C12

&

Additive Expressions

* second level of binary expressions
* second operand is added to or subtracted from the
first, depending on the operator used
* additive expressions are evaluated after multiplicative
expressions
* Their use parallels algebraic notation.
* Examples:
—at+7
-b-11

June 2003 Computer Programming Day One 113

Assignment Expressions

@

» evaluates the operand on the right side of the operator
(=) and places its value in the variable on the left.

» forms of assignment:
— Simple

— Compound

June 2003

Computer Programming

Day One

114

Simple Assignment n@v

* the assignment form found in algebraic expressions
« Examples:

—a=>5

—-b=x+1

—i=i+1
* the value of the expression on the right of the

assignment operator is evaluated and becomes the
value of the total expression

* The assignment expression then places the value in
the left operand.

+ the left operand must be a variable, not a constant

+ otherwise, you will get a compile error.
June 2003

Computer Programmting ~ Day Cne _ A L

Simple Assignment

» examples of assignments:

&

... Aune2003

Expression | Contents of | Contents of | Value of | Result of
variable x |variabley |expression |expression
Xx=y+2 10 5 7 x=7
Xx=x/y 10 5 2 Xx=2
x=y%4 10 5 1 x=1
. Computer Programming Day One 118

Compound Assignment @

* a shorthand notation for a simple assignment

* requires the left operand be repeated as a part of the
right expression

+ five compound assignment operators:

June 2003 Computer Programming Day Cne 117

Compound Assignment

@

* To evaluate a compound assignment expression, first
change it to a simple assignment

Compound Expression | Equivalent Simple
Expression
X *=y x=x%*y
X/=y x=x/y
X %=y x=x%y
X+=y X=Xty
X-=y X=X-Yy
June 2003 Computer Programming Day One

118

Compound Assignment @

* Examples of basic compound assignment expressions:

Expressio | Contents | Contents | Value of | Result of
n of variable | of variable | expression | expression
X y
X¥=y 10 5 50 x=50
X/=y 10 5 2 x=2
X %=y 10 5 0 x=0
X+=y 10 5 15 x=15
X-=y 10 5 5 X=5
ume2003 CompuerProgomming DayOre 119

Postfix Increment / Decrement

* postfix increment

— 1++ - variable i being increased by 1

— value of the postfix increment expression is determined

before the variable is increased

* postfix decrement

— i-- = variable i being decreased by 1

— value of the postfix decrement expression is determined

before the variable is decreased

o dme2003 - Computer Programming ~ Day One

&

Postfix Increment / Decrement

» Example:

If the variable i contains 4 before the expression is evaluated,

the value of the expression i++is 4.

As a result of evaluating the expression and its side effect, i

contains 5.
The value and effect of the postfix increment

k _ value of & before incremant _
value
[+]

+
jy _ increment a by 1 . _

effect

June 2003 Computer Programuming Day Cne

&

121

.. June 2003

Prefix Increment / Decrement

» the reverse of the postfix operation
« the effect takes place before the expression

increment a by 1

A |

effect

++3

s

value of a after increment

value

Computer Programming Day One

L3

Postfix Increment / Decrement

&

+ Example:
Expressio| Valueofa Value of Value of a
n before expression after
at++ 10 10 11
a-- 10 10 9
June 2003 Computer Programming Day One

122

Prefix Increment / Decrement

* use the postfix operator - the value to be current
contents of variable

&

» use the prefix operator = the value to be new contents
of variable

» Examples of prefix increment/decrement:

... June2003

Expressio| Value ofa Value of a Value of
n before after expression
++a 10 11 11
--a 10 9 9
oo ... Computer Programming DayOme

124

Sizeof &

* an operator tells the size, in bytes, of whatever type is
specified.

* specifying the size of object during execution
-> program more portable to other hardware
* Size of integer type:
— 2 bytes on most PCs

— 4 bytes on most mainframe computers
— as large as 10 bytes on supercomputers

* to know exactly the size of an integer: use sizeof
operator: sizeof (int)

June 2003 Cuomputer Programming Day Qne 125

Sizeof @

* saving the value in an integer type:
x = sizeof (int)
* possible to find the size of a primary expression

— the size of memory in terms of bytes required to hold the
expression

* Example sizeof (x)

Unary Plus / Minus @

* Unary Plus/Minus:

— operators in C++

— can be used to compute arithmetic value of operand
* Plus operator:

— does nothing but yield the value of the operand

— to provide symmetry with the minus operator
» Minus operator:

— used to change the sign of a value algebraically

— used to change a variable from plus to minus or minus to
plus

~ value of stored variable is unchanged

June 2003 Computer Programming Day One e

e oo June 2003

June 2003 Computer Programming Day One 126
Unary Plus / Minus &W
* Examples:
Expressio Contents of a Expression
n Before Value
and After
Expression

+a 3 +3

-a 3 -3

+a -5 -5

-a -5 +5

weemie Computer Programming =~ DayOwme = . o128

Precedence and Associativity wavu

* Precedence:

— determine the order in which different operators in a
complex expression are evaluated

* Associativity:

— determine the order in which operators with the same
precedence are evaluated in complex expression

June 2003 Computer Programming Day One 129

Precedence Table

&

Precedence | Operator | Description Side
Effect

ﬁgq

Asscolativity

Identifier
18 Constant N
0) Parenthesical expression

N/A

N/A

Global scope
Class scope

17

N/A

() Function type

) Type constructor

[1 Array index

- Indirect member access
Direct member access

~ Z Z ZZ Z| Z

++-- | Postfix increment/decrement

N/A
N/A

o w

Right

June 2003 Computer Programming Day One

130

Precedence Table &W

Precedence | Operator | Description Side *Arity | Asscoiativity
Effect
++-- | Prefix increment / decrement Y U
sizeof | Size of object in bytes N U
+- Plus / Minus N 0]
! Not N U
& Address N))
15 * [ndirection N u Right
~ One’s complement N U
new Allocate memory Y U
delete | Release memory Y U
() Type cast N B
14 . U:.,onﬂ member uoi,ﬁq access N B Left
. Indirgct mernber pointer access
Jone 2603 Computer Programming Day One 131

June 2003

Precedence Table

&

Side

ed ,,
Precedence | Operator | Description Effect

* Arity

Asscolativity

13 */% Multiple / divide / modulus

A

12 +- Addition / subtraction

10 < B Bit left / bit right

< «<=>>= | Comparison

& Bit and

s Bit exclusive or

Bitinclusive or

&& Logical and

I Logical or

wWilba|lwlio|w|lw|wo
ziz\Zz|zjz |Z|Zz|Zz |2

?: Conditienal

N el O = = == = v ==

Left

Computer Programmiog Day One

B,

Precedence Table &
Precedence | Operator Description Side *Arity | Asscoiativity
Effect
= += = Assignment
2 e Yy | B Righ
»x= <<= &= | Bit assignment et
&= r= 1=
1 R Comma N N/A Left

* Arity: Unary, Binary, Termnary

June 2003 Computer Programming Day One 133

Precedence @

* (C++ extends the concept to 18 levels
* Example: 2+3 *4
— two binary expressions:
* Binary addition (Precedence of 12)
* Binary multiplication (Precedence of 13)
-~ multiplication is done first, followed by the addition
— same expression with the default parentheses added:
(2+(3*4))
— value of the complete expression is 14

June 2003 Computer Programming Day One 134

Precedence &\v

* Example: -b++
— two different operators in this expression
+ the unary minus (Precedence of 15)
* the postfix increment (Precedence of 16)
— Postfix increment evaluated first, followed by unary minus

June 2003 Computer Programming Day One 135

Associativity A@a

+ used only when operators all have same precedence

» Left associativity
— evaluates the expression by starting on the left and moving
to the right
* Right associativity

~ evaluates the expression by proceeding from the right to the
left.

Jure 2003

Computer Programming Cay One 136

e . e — oy et AT [o+ e o T ALY TPy e o e ee e

Left Associativity @

* Example:3*8/4%4*5

— four operators of same precedence of 13 (*/ % *)

— Left associativity groups the expression:
((((3*8)/4)%4)*5)
— Value of the expression is 10

June 2003 Computer Programming Day One 137

Right Associativity @

* 3 types of expressions that associate from the right:
— The unary expressions
— The conditional ternary expression
— The assignment expression
* more than one assignment operator in an assignment
expression
— assignment operators must be interpreted from right to left

June 2003 Computer Programming ~ Day One 138

Right Associativity &

* Example:a+=b*=c-=75
~ evaluatedas (a+=(b*=(c-=)))
~ thenexpandedto(a=a+(b=b*(c=¢c-5)))
— ifa=3,b =35, and c = 8 initially, expression becomes
(a=3+(b=(5*(c=8-35)))
— thenc=3,b=15,anda=18
— value of complete expression is 18

* Example:a=b=c=d=0;
— several variables that all need to be initialized to zero
— Rather than initializing each separately use a complex statement to do it

Computer Programming Day One

B

Side Effects &

» A side effect is an action that results from the
evaluation of an expression.

* For example, in an assignment expression, C++ first
evaluates the expression on the right of the
assignment operator and then places its value in the
variable on the left of the assignment operator.

* Changing the value of the variable is a side effect.

* Consider the following expression:
x=4

. June 2003 . Computer Progamming = DayOme = 140

Side Effects A@\V

 This simple expression has three parts

— First, on the right of the assignment operator is an
expression that has the value 4.

— Second, the whole expression (x = 4) has a value of 4.
— Third, as a side effect, x receives the value 4
* Let’s modify the expression slightly and see the same

three parts
X=x+4;

June 2003 Computer Programmiong Day One 141

L Jume 2003

Side Effects n@v

» consider the side effect in the postfix increment
expression a++

* the value of this expression is the value of a before
the expression is evaluated.

* The side effect, the value of a is incremented by 1.

.. Somputer Programming DayOne M3

Side Effects @

» Assuming that X has an initial value of 3, the value of
the expression on the right of the assignment operator
has a value of 7.

» The whole expression has a value of 7.
* And as a side effect, x receives the value 7.

» To prove these three steps to yourself, write and run
the following block of code:

June 2003

x=3;
cout << “ x is: o T<x << endl;
cout<<x=x+4is: "<<(x=x+4) <<endl
cout << “x now is: T <X <<
end]l;
June 2003 Computer Programming Day One 142
Side Effects &

+ There are six different side effect:
— Four pre-effect
— Two post-effect

* The four pre-effect side effects are the unary prefix increment
and decrement operators (++a and --a), the function call, and
the assignment.

— The side effect for these expressions takes place before the expression
is evaluated.

* The post-effect operators are the postfix increment and
decrement.

— The side effect takes place after the expression has been evaluated.

— The variable value is not changed until after it has been used in the
expression

oo Compuier Progamming DayOne 144

&

Side Effects

* These six operators are shown in table

of June 2003

Type of Side Expression Type Example
Effect
Pre-effect Unary prefix increment ++a
Pre-effect Unary prefix --a
decrement
Pre-effect Function call dolt(...)
Pre-effect Assignment a=1at+=y
Post-effect Postfix increment at+
Post-effect Postfix decrement a--
June 2003 Computer Programming Day One 145
Evaluating Expressions A“MW

* Rules to evaluate an expression without side effects:

1. Replace the variables by their values.

— This gives us the following expression:
3*%4+4/2-5%4

._.Computer PFrogamming _Day One _ar

&

Evaluating Expressions

» We have introduced the concepts of precedence,
associativity, and side effects

*» The first expression is shown below.

» It has no side effect, so the values of all of its
variables are unchanged.
a*4+b/2-c*b

* For this example, assume that the values of the
variable are
345

abec

June 2003 Computer Programming Day One 146

&

Evaluating Expressions

2. Evaluate the highest precedence operators and
replace them with the resulting value.

— In the above expression, the operators with the
highest precedence are the multiply and divide
(13).

— We evaluate them first from the left and replace
them with the resuiting values.

— The expression is
B*H+@/2)-(5*4)>12+2-20

June 2003 ..Computer Programming _Day One | LLoJ148

Evaluating Expressions Q\MW

Repeat step 2 until the result is a single value.

— In this example, there is only one more precedence,
binary addition and subtraction. After evaluating them,
the final value is -6.

— There are no side effect in this expression, all of the
variable have the same values after the expression has
been evaluated that they had at the beginning.

June 2003 Computer Programming Day Cne 1489

Evaluating Expressions MMW

* Rules for an expression that has side effect and
parenthetical expressions.

* For this example, consider the expression
—-a*(3+b)/2—-ctt+*Db

* Again, assume that the variables have the values
shown below.
345

mcm

June 2003 Computer Programming Day One 150

... June 2003

Evaluating Expressions @

To evaluate this expression, use the following rules:
Rewrite the expression as follows:

a. Copy any prefix increment or decrement
expressions and place them before the
expression being evaluated. Replace each
removed expression with its variable.

b. Copy an postfix increment or decrement
expressions and place them after the
expression being evaluated. Replace each
removed expression with its variable.

. Compuer Programming _ Day One 151

Evaluating Expressions @
» After applying this rule, the expression now reads
--a
a*(3+b)/2—-c*b
ctH+

* Evaluate any pre-effect expressions, determining the
effect on the variables.

» After evaluating — a, the variable are now
2 45
abec

Computer Programming =~ DayOoe 182

Evaluating Expressions @

2. Replace the variable in the expression with their
values. The modified expression is now
2*%(3+4)/2-5%*4
ct+H+

3. Evaluate the parenthetical expression(s) first and
discard the parentheses. Our expression new reads
2%7/2-5%4
ct+H+

June 2003 Computer Programming Day Cne 153

Evaluating Expressions &W

+ Evaluate the highest precedence operators and replace
them with the resulting value, repeating until the
result is a single value. The result of each step in this
rule 1s shown below.
14/2-5%4 > 7-5%4>7-20-> -13
ctHt

+ Evaluate the post effect expressions and replace their
values with the new values.

In this example, the resulting value are
246
abc

June 2003 Computer Programming Day One 154

Warning &\v

» A warning is in order: In C++, if an expression
variable is modified more than once in an expression,
the result is undefined.

» (C++ has no specific rule to cover this situation, and
compiler writers can implement the expression in
different ways.

+ The result is that different compilers will give
different expression results.

... June 2003 Computer Pr i Day One o 108

Warning @

 For example, consider the following rather simple
expression:
(b++ - bH)

« In this expression, b is modified twice.

» There are three possible interpretations of this
expression, all of them correct.

* Given that b is initially 4, one possible evaluation is
((@+t) - (bt+t))
(4 —=(06+))
G
bis6

June 2063) Computer Prog ing __ Day One B 156

Warning &\&

* Two other interpretation are

((b++) - (4++)) ((4++) - (4+4))
(5+H)- 4) ((4+H) - 4)
(5-4) @-4
+n (0)

bis6 bis6

* The side effect is the same in all cases — b is 6 — the value of
the expression differs.
— In the first case, the value is -1,
— In the second case, the value is + 1
— In the last case, the value is 0.
* Never use a variable affected by a side effect more than once
in an expression.

June 2003 Computer Programming Day One 157

Implicit Type Conversion AmW

» C++ will automatically convert any intermediate
values to the proper type so that the expression can be
evaluated.

* When C++ automatically converts a type from one
format to another, it is known as implicit type
conversion.

June 2003 Computer Programming Day One 158

Implicit Type Conversion @

» (C++ uses the rule that in all expressions except
assignments, any implicit type long double
conversions will always be

made to the more general T
type according to the L_long int

promotion order

1 Jume 2003 Computer Programming Day One 158

Implicit Type Conversion @

» Using this hierarchy, to add an integer and a float and
store the result in a integer:

— convert the integer to float, because float is higher
in the promotion hierarchy

— after the addition convert the result back into an
integer for assignment to the integer variable

— All of this work is done for us by the compiler

June 2003 Computer Programming Day One 160

Implicit Type Conversion @

* This table gives several examples of the intermediate
type in a mixed type operation.

Expression Intermediate Type
char + float float
int — long long
int * double double
float / long double long double
(short + long) / float long then float

June 2003 Computer Programming Day One 161

Explicit Type Conversion @

* uses the cast expression operator

* specify the new type in parentheses before the value
to be converted

» Example: to convert an integer a to a float
—(float) a

June 2003 Computer Programming Day One 162

Explicit Type Conversion @

» The operand must be a unary expression.

* To cast another format, such as a binary expression,
put it in parentheses to get the correct conversion

» Example: to cast the sum of two integers to a float
—(float) (x+vy)

June 2003 _ Computer Programning Day One 163

Explicit Type Conversion @

» Use: to ensure the result of a divide is a floating-point
number.

* Example: the result would be an integer, if the
average of a series of integer test scores are calculated
without a cast

— To force a floating-point result:
Average = (float) totalScores / numScores;

— explicit conversion of totalScores to float, and then
an implicit conversion of numScores so that it will
match.

— The result of the divide is then a floating-point
number to be assigned to average.

Tune 2003 Computer Programming Day One SR | S

&

Explicit Type Conversion

* Example: (float) (a/ 10) wherea=3
— resultis 0.0

— no need to do any conversions to divide integer 3 by integer
10

— C++ simply divides with an integer result, 0.

— The integer 0 is explicitly converted to the floating-point
0.0.

— To get a float result, cast one of the numbers
(float)a/ 10

» better to code the cast explicitly
— to remind yourself that the cast is taking place

— though the com

mmﬂ, could correctly cast for you
June 2003 omputer Programming

Day One 185

&

Expression Statements

» expression is turned into statement by placing a
semicolon (;) after it

* When C++ sees the semicolon, it completes any
pending side effects, and discards the expression
value before continuing with the next statement.

» An expression without side effects does not cause an
action.

_ June 2003 Computer Programming Day One 167

Statements @

* causes an action to be - Exprossion
performed by the program. _
|

Compound
Statement

* translates directly into one
or more executable
computer instructions.

* six types of statements

* the first two will be
discussed

Tune 2003 Computer Programming Day One 166

Expression Statements ../“mv

« Example of expression statements: a=2;
— effect is to store the value, 2, in the variable a
— The value of the expression is 2

— After the value has been stored, the expression is
terminated and the value is discarded.

— C++ then continues with the next statement.

June 2003 Computer Programming

Day One . 68 |

Expression Statements @

* Example of expression statement: a=b = 3;
— two expressions in this statement
—identicaltoa=(b=3);
— (b=3) has a side effect of assigning the value 3 to
variable b
- value of this expression is 3

— expression statement now results in the expression
value 3 being assigned to the variable a.

— expression is terminated, its value, 3, is discarded.
— effect of the expression statement, is that 3 has

nune 20030€EN. Stored ~g§® Day One 169

Expression Statements @

» Example of expression statement: a++;
—assumed a = 5 initially

— value of the expression is 5, which is the value of
the variable, a, before it is changed by the side
effect

— a is incremented to 6 upon completion of
expression statement

— value of the expression, which is still 5, is
discarded because the expression is now complete

June 2003 Computer Programming Day One 170

Expression Statements vav

* Example of expression statement: b; 3;

- the semicolon: an example of a null expression statement
+ null expression statement

— has no side effect

- no value

— useful in some complex statements

* aunit of code consisting of zero or more statements
— also known as block
— allows a group of statements to become one single entity

+ All C+t functions contain a compound statement known as the
function body

. june2003 Compuler Progmmming _ Day One I

e} e Jume 2003 Computer Programming __ Day One

Compound Statements @

* consists of
— an opening brace
— an optional declaration and definition section
— an optional statement section
— aclosing brace
» Both the declaration-definition section and the
statements are optional, either one should be present

» If neither is present, then you have no statement,
which doesn’t make sense.

Compound Statements @

* the makeup of a compound statement:
{

// L.ocal Declarations
int x:
int y:
int z;

h_ Opening Brace

/! Statements

i
1
H

Closing Brace

1;
2;

X
| y
£

June 2003 Computer Programming Day One 173

Compound Statements /%%

 a compound statement does not need a semicolon

« If you put a semicolon after the closing brace, the
compiler thinks that you have put a extra null
statement after the compound statement

« This is poor style, but it does not generate any code or
give you a compile error

June 2003 Computer Programming Day One 174

Statements and Defined Constants .Mm\v

* When you use preprocessor-defined commands, you
need to be very careful to make sure that you do not
create an error.

. WoEnEc.Q. that the define constant is an automatic
substitution.

* One common mistake is to place a semicolon at the
end of the command.

* The preprocessor uses a simple text replacement of
the name with whatever expression follows, the
compiler will usually generate a compile error if a
semicolon were found.

June 2603 B Computer Programming Day One L 175

Statements and Defined Constants %mv

* This problem is seen in the following example:
#define SALES TAX RATE 0.0825

salesTax = SALES TAX RATE * salesAmount;

*» After the substitution would be the following
erroneous code because a semicolon has been coded
after the constant value;

salesTax = 0.0825; * salesAmount;

June 2003 Cemputer Programming __ Day One [¢ N

Statements and Defined Constants n@v

* This can be an extremely difficult compile error to
figure out because you see the original statement and
not the erroneous substitution error.

* One of the reasons programmers use UPPERCASE
for defined constant identifiers is to provide an
automatic warning to readers that they are not looking
at the real code.

June 2003 Computer Programming Day One 177

Designing Structured Programs &\v

* In top-down design, a program is divided into a main
module and its related modules.

« Each module is in turn divided into submodules until
the resulting modules are intrinsic.

+ Until they are implicitly understood without further
division.
* Top-down design is usually done using a visual

representation of the modules
— known an a structure chart.
— shows the relation between each module and its submodules.

June 2003 Computer Programming Day Cne 178

RPN R HF—H—O Ngu

Designing Structured Programs n\mwvv

* the structure chart is read top-down, lefi-right
— first we read Main Module.

— Main Module represents the entire set of code used to solve
the problem.

Computer Propramming Day One 179

Designing Structured Programs o\.w\.v

» The MainModule is known as a calling module
because it has submodules.

» FEach of the submodules is known as a called module.

* Because modules 1, 2, and 3 also have submodules,
they are also calling modules. They are both called
and calling modules.

i June2003 . ComputerProgrmming DayOwe 180

Designing Structured Programs @

» Communication between modules n a structure chart
is allowed only through a calling modules.

» If Module 1 needs to send data to Module 2, the data
must be passed through the calling module, which is
Main Module.

» No communication can take place directly between
modules that do not have a calling-called relationship.

June 2003 Computet Programming Day One 181

Designing Structured Programs &W

* How can Module 1a send data to Module 3b?

* Module 1a first sends the data to Module 1, which in
turn sends it to the MainModule which passes it to
Module 3, and then on to Module 3b.

June 2003 Computer Programming Day One 182

c.o L June 2003

Designing Structured Programs Am\v

» The technique used to pass data to a function is
known as parameter passing.

» The parameters are contained in a list that is a
definition of the data passed to the function by the
caller.

» The list serves as the formal declaration of the data
types and names.

_ Computer Programming __ DayOne . ..183

Designing Structured Programs n“.m\.v

= Data are passed to a function using one of two
techniques:
— Pass by value
— Pass by reference
* In pass by value, a copy of the data is made and the
copy is sent to the function.

» This technique results in the parameters being copied
to variables 1n the called function and also ensures
that the original data in the calling function cannot be
changed accidentally

June 2003 . Computer Programming _ Day One 184

Designing Structured Programs Q\WW

» The second technique, pass by reference, sends the
address of the data rather than a copy.

*» In this case, the called function can change the
original data in the calling function.

» Changing data is often necessary, it is one of the
common sources of errors and is one of the most
difficult errors to trace when it occurs.

June 2003 Computer Pragramming Cay One 185

Functions in C++ @

* (C++ program structure chart

" Functions called by main

Funetions called Functions caled by

Fungtions caltzd by function 1

Functions in C++ f%\v

» A function in C++ is an independent module that will
be called to do a specific task.

» The function may or may not return a value to the
caller.

» The function main is called by the operating system,
main in turn calls other functions.

* When main is complete control returns to the
operating system.

=)

.. .. June2003 . Comp ogramming __Day One e e e TBE

by function 2 function 3 i
June 2003 Computer Programming Day One 1868
Functions in C++ @

* In general, the purpose of a function is to receive zero
or more pieces of data, operate on them, and return at
most one piece of data.

« At the same time, a function can have a side effect.

* A function side effect is an action that results in a
change in the state of the program.

L June2003 . Computer Prog ing DayOme . 188

Functions in C++ &W
* The function concept is shown
in following figure.
» A function in C++can have a
value, a side effect, or both.

¢ The side effect occurs before the
value 1s returned.

» The function’s value is the
expression in the return
WS.HOEOHH.H. o At most one

. . W U_!w“u ”.”o nM”_u.... can

* A function can be called for 1ts -

value, its side effect, or both.

June 2003 Computer Programming Day One 189

TN

Functions in C++ @

+ advantages associated with using functions in C++ or
in any other computer language.

— problems can be factored into understandable and
manageable steps.

— functions provide a way to reuse code that is required in
more than one place in a program.

— to using functions is closely tied to reusing code.
— use function to protect data.

o, June 2003

User-Defined Functions @

* Like every other object in C++, functions must be
both declared and defined.

* The function declaration is done with a prototype
declaration.

* You use the function by calling it.

» The function definition contains the code required to
complete the task.

. Computer Programming _ DayOne e 19

June 2003 Computer Programming Day Crne 190
User-Defined Functions @
) .) I o
. Huﬂﬁ@qﬂ_m—.—w—o;m—\zmum #include <iostream h> \..\..\ m_unﬂw__.”_.”“ ° _

among these function i Prototype Declarations

int mudtiply [iml nurnd, int num?2 §
components. M_,. main {void)

1f Local declarations _ Calling is done in the

* the function name is
used three times:

e .\ statsment section
I Statements \

product = muRiply (multiplier multiplicand),

— When the function is rotum 0. / Definfion s done after
declared, } fmain 7 17 g fonction
7
— when i1t is called ..ﬁa multiply { inl !, int num2) [
— when it is defined # Statements
return { nemt T omam2 B,
§ Amultipty

June 2003 - Computer Programming Diay Cne o 192

Function Definition @

* The function definition contains the code for a
function.
» The definition is made up of two parts:

— The function header and the function body, which its a
compound statement.

* a compound statement must have opening and closing
braces and it has declaration and statement sections.

June 2003 Computer Programming Day Cme 183

Function Definition &W

* The function definition format

return_type function_name (formal parameter __wc_

{

/i Local Declarations

Statements

} # function_name

June 2003 Computer Programming Day One 184

Function Header @

» A function header consists of three part:
— The retum type
— The function name
— The formal parameter list
+ A semicolon is not used at the end of the function
definition header.

June 2003 Computer Programming Day One 185

Function Header &W

» If the return type is not explicitly coded, C++ will
assume that it is int.

* It you are returning nothing, you must code the return
type as void.

* it is good practice to explicitly code the return type in
all cases, even when it is integer.

* The consistency of this practice eliminates confusion
and errors

June 2003 Conputer Programming Day One 196

Function Body | @

The function body contains the declarations and
statements for the function.

The body starts with local definitions that specify the
variables by the function.

After the local declarations, the function statements,
terminating with a return statement, are coded.

If a function return type is void, it may be written
without a return statement.

We believe that default statements should be
explicitly coded for clarity, we strongly recommend

that every function, even void functions, have a return
statement.

June 2003 Computer Progtamming Day One 197

Function Body @

 The figure shows two functions, first and second.

The function return type
should be explicitly

defined

I
int first (...) _V void second (...)
{ {

A return statement
\ should be used even if

return (x+2); return: nothing is returned

} /7 first } // second
June 2003 Computer Programming Day Cne 198

Function Body n\‘mw

The function first has been declared to return an
integer value.

Its return statement contains the expression x + 2.

When the return statement is executed, the expression
ts evaluated and the resulting value is returned

June 2003 Computer Programming Day One 169

Function Body @

» The function second returns nothing, its return type is
void.

¢+ It therefore needs no return statement — the end of the
function acts as a void return.

* We strongly recommend that you include a return
statement even for void functions.

* In this case, the return statement has no expression; it
is just completed with a semicolon.

=

June 3003 B Ce

e

ing Dhay One 200

Formal Parameter List @

* In the definition of a function, the parameters are
contained in the formal parameter list.

» This list defines and declares the variables that will
contain the data received by the function.

* The parameter list is always required

» If the function does not receive any data from the
calling function, the parameter list is empty is
declared with the keyword void.

Formal Parameter List @

* In C++, each variable must be defined and declared
fully with multiple parameters separated by commas.

* We recommend that each parameter be defined on a
separate line in the function definition.

» To make it much easier to read the parameter list,
align the parameter types and their names with tabs.

June 2003 Computer Programming Day One 202

Tune 2003 Computer Programming Day One 20
L) b
Formal Parameter List Qm\v

* the variables x and y

are formal |

parameters that i Two values are received

. | from the calling function
receive data from

Parameter variables

q
y

. . double average
the calling function’s |(intx, inty)

actual parameters. ¢

double sum; Local variable
sUM =X +y;

* They are value ceturn (sum/2); sum

i i ave
ﬁm,ﬁmgmamamu now.wmm) 9 One value is returned to
of the values being the calling function

passed are stored in
the calied function’s

memory arca.
June 2003 Computer Programming Day One 203

Formal Parameter List A“mwv

Two values are qmo.m._swa
from the calling function

 If the function
changes either of
these values, only the
copies will be M_a X, int y)

changed. double sum; Local variable
SUM = x +y,

* The original values in | return (sum/2); sum I

; : i
the om:_ﬁm function bl averg One value is retumed to
remain gowmﬁmmﬁ. the calling function

Parameter variables

q
¥

double average

Tune 2003 Computer Programming Day One 204

Local Variables

* A local variable 1s a
variable that is

defined inside a Two values are wmnm?.ma.f

. from the calling function
function and used g e .
without _‘—mdmbm any m”ﬂw_mw:m“,ﬁﬂmnm _umaa._mwm_. variables
role in the { y l
communication double sum; Local variable

. sum = X+,

between functions. return (sum/2); surn

The figure shows an
example of a function
with both formal
parameters and a

local variable, sum.
June 2003

} i averg - -
One value is returmed to
the calling function

Day One 205

Computer Programming

Prototype Declaration nvbn..\v

* the return type does not need to be included, but
recommend to use it.

* The parameter list must always be present, if there are
no parameters, code void in the parentheses.

+ If there are multiple parameters, separate each type-
identifier set with commas.

June 2003 Computer Programming Day One 207

&

Prototype Declaration 4

* Prototype declarations consist only of a function
header, they contain no code.

» Like function definition headers, prototype headers
consist of the three parts:
— The retum type
— The function name
— The formal parameter list

¢ Unlike the header .»,oa the function definition,
prototype declarations are terminated with a
semicolon.

* Prototype declarations are placed in the global area of
the program just before main
June 2003

Computer Programming Day One 206

Prototype Declaration

&

» Formal parameter are variable that are declared in the
header of the function definition.

* Actual parameters are the expressions in the calling
statement.

» The formal and actual parameters must match exactly
in type, order, and number, Their names do not need
to match.

June 2003 Computer Programining Day Cne 208

Prototype Declaration

&

The prototype j
declaration tells main

int multiply { int multiplier, int multiplicand),
that a function named gimeneed VAN
multiply, which niproduek \
accepts two integers produet __
and returns one integer, .ﬂem_,_ﬂg |
will be called. e w_,r__,_ufs;. iy - S
» That is all main needs, ; ﬁ“ﬂu_‘l

it does not require
anything else to make
the call.

Jume 2003 Computer Programming Day Cne

209

* the names in the !,_a o 7
rrialn i i [
4 . |

Prototype Declaration A@J

formal parameter names j
, . #ncluda

mn 9@ Q@OH”HNHHOHH Qo .—HOA—“ int multiply { int multiplier, int multiplicand };

int main {veid) T

have to be the same as the { e

int product; !
actual parameter names.
product =

prototype declarations are x a |

. __= multiply T:ﬂx iy) I]
much more meaningful * e L - L/
and for that reason should il

have been used in the

Prototype Declaration

» Itis not a good style to default the return type

*m_..n_cawl M

int multiply { int muitiplier, int mulliplicand 3,
mt main {void) T
{ 7

int product;

Tune 2003 Computer Programming Day One

21

function definition.
June 2003 Computer Programming Day One 210
The Function Call &\v

* A function call is a postfix expression.

* The operand in a function call is the function name,
the operator is the parentheses set, (...), which
contains the actual parameters.

* The actual parameters identify the values that are to
be sent to the called function.

* They match the function’s formal parameters in type
and order in the parameter list.

* If there are multiple actual parameters, they are
separated by commas.

Jung 2403 Computer Programming Day Cne 212

The Function Call @
» There are many different ways to call a function.
» multiply is called six different ways.
» The first three show calls with primary expression.

» The fourth uses a binary expression, a+6, as the first
parameter value, and the fifth shows the function
multiply (a,b) as its own first parameter.

= The last example sums it all up, multiply (6,7)
.,Ez_ue {a7)
any expression that reduces to iy { o467)
. multiply { :.E_ﬁ__u_u\ {a,p),7)
a single value can be passed utiply { .,
as mum—HgmHOH.. . " expression \\ /axuﬁmm_c:
June 2003 Computer Programming Day One 213

The Function Call &W

» Functions can be classified by the presence or
absence of a return value.

+ Expressions that cannot return a value have a return
type of void.

All other functions return a value and can be used
either as part of an expression or as a stand-alone
statement, in which case the value is simply discarded.

June 2003 Computer Programming Day One 214

Void Functions with No Parameters Q.v

¢ > ESO.—HOHH #include <iostream.h> _V
without A
ﬁmﬁgﬂﬂOHm must A # Statements [
be called with the fom |

} 4 main

parentheses empty.

void greeting (void) [
¢ the parentheses { ot << “Hallo Workdr
are the function } i greing
call operator.
greeting ();
June 2003 Compuler Programming Day Cne 215

Void Functions with No Parameters %m\v

The greeting function

receives nothing and #include <iostream h>

returns nothing, H_h_w,w_,”ﬁw_“aﬂ
« It has a side effect, to grectngty

display the massage, i f A

and is called only for vout groaing tvok) N E

that side effect. ﬁﬂ:ﬂ "Hello World!™ T
» The call still requires 1 oreetng -

parentheses even when
there are no actual

parameters.
June 2003 Computer Programming Day One 218

Void Functions with No Parameters @

* a call to function

with no parameters
might be tempted to
leave the parentheses
off the call.

* This is valid syntax.

#include <icstream.h> _V
void greeting {void);

int main {void) [
i Staterments

groeting();

—

ﬁE:._ [+
.__a_a greafing (void)

85 << "Halle Worldr™;
return,

Hella
World

June 2003

Void Functions with No Parameters

* 1f greeting call

without the
parenthesis after the
function name, the
call would not be
made and the
function would not
be executed.

#include <icstream h> 7
void greeting {void),

int main {veid) l
f Statements

greeting();

~—

retum O;
} main l

void graeting {void)

{
cout <= “Hallo Workd!";
retum;

i gresting

Computer Programming

Day One

&

Hella
Waorld

218

1t gresting
June 2003 Computer Programsming Cay One 217
Void Function with Parameters Qw.\v
function printTwo receives two integer parameters.
#include <iostream.h» _V 7 a b
vold printTwo {intint); -
int main ?omuc: ~ i I
inta =5; ;
intb=10;
printTwo (a,b),
ratum]
}# main T :
—} Call | _
void printTwo (Int x, int |V ; . '
e e v
coit << x <<t “ a2y, X ¥
retumn;
R E_Mm“ Nothing is returned 1o !
the calling function
June 2003 Computer Programming Day One 219

June 2003

Void Function with Parameters

&

The function printTwo returns nothing to the calling
function, main, its return type is void.

It must be called as a stand-alone postfix expression
because it does not return a value.

It cannot be included as part of another expression.

While printTwo returns no values, it does have a side
effect: the two numbers are printed to the monitor.

Computer Propramming

Day One

220

Function That Return Values @

* a function passes a
parameter and #include <iostream h>

int sqr {int x);
returns square of Ma main (void)

int a;
the parameter nt; h
cin > a;
b = sqr {a);
cout << @ <<*“ squared.

<< b << andl;

Function That Return Values n\m\v

* The call is a postfix

retum 0;
}4# main .
int sqr intx) [N ”_
: T
return { x *x ; X
} 4 sqr
June 2003 Computer Programming Day One 221
Pass by Value A.‘b%

* acopy of the data is create and placed in a local
variable in the called function.

* passing data ensures that regardless of how the data
are manipulated and changed in the called function,
the original data in the calling function are safe and
unchanged.

* passing the value protects the data, it is the preferred
passing technique.

June 2003 Computer Programming Day Cne 223

expression, it has a T
returned value from the | exens,
W_.EO.—HOHﬂ. ¢ int a; o
. inty; / Gall
* Afier the function has R
been executed and the e pnuarad:”
value returned, the value |, un® o |
on the right side of the === N
assignment expression ! ham (x*x) x
1s return value, which is L2
then assigned to b.
June 2003 Computer Programming Day Cne 222
Pass by Reference @

* sends the address of a variable to the called function
rather than sending its value.

» Pass by reference if the contents of a variable in the
calling function to be changed.

June 2003 Computer Programming _ Day One 224

Pass by Reference @

* to write a function that processes two data values and
“returns” them to the calling function

* A function can return only one value, we need to
pass by reference.

June 2003 Computer Programming Day Cne 225

Pass by Reference @

* To pass by reference, we use the address operator (&)

* The address operator simply tells the compiler that
parameter name is an alias for the variable name in
the calling function.

* Any time we refer to the parameter, we are actually
referring to the original variable.

June 2003 Compuler Programming Day One 228

Pass by Reference %mw

* One common process that occurs often in
programming is exchanging two pieces of data.

* We can write a function that, given two integer
variables, exchanges them.

* Two variables are being changed, we cannot use the
returmn statement,

Instead, we use pass by reference

Tune 2003 Computer Programming Day One 227

Pass by Reference A\W.a

* to exchange two variables, you cannot assign them to
each other

*X=Yy; /{ This won’t work.
y=X; //Resultisyin both.

» the original value of y ends up in both variables.

* To exchange variables, you must create a temporary
variable to hold the first value while the exchange is
being made.

* The correct logic is shown below.

hold=y; // value of y saved
y =x; // x now in 'y
x = hold; // original y now in x

June 2003 Computer Programming Dray One 228

Pass by Reference

* exchange function
and its data flow.

* Examine the
prototype declaration
carefully.

* There is an
ampersand in the
declaration of numl
and num?2.

June 2003

¥ Prololype Slalemants
void sxchange finl& num?,
nitd num2)

int muain (void)

{

Local Declaration
inl &,

inl b;

I Stataments

m..ﬁ__..n:no [21N
oout << @ %< << b << gndl;
ratum 14

3 main

void axchanga {Int& numi,

(

Hf Local daclaration
int holg;
Slalemanls
hold = um1;
numy = pum;
2 = hakd,
melum;

Hi snchange

int& aum2) 17

Computer Programming

Day One

229

Pass by Reference

* The ampersand is used
with the type
declaration to specify
that the function uses
pass by reference.

* changing the values of
a and b in main, need
to pass by reference.

it Pralotypa Stalemants
vold exchangs {Irm& num1,

inté& numzy,
int main {void)

{
J Local Declaration
It a;

I ;.
M Stmlemants

mwn_._!..uu {13
COut << g %= * " <% b == andl;

.arE_._._ o;
1/ main

woid eocchange (Omt& numa,
int& numg}
{

i Locat deciaration
i1 hald;

* The address operators 4 Samarts

" (&) tell the compiler ety
to pass by reference.)4 nchangs

June 2003 Computer Programming Day One

230

Pass by Reference

* In the statements
exchange.

* first copy numl’s
value to hold.

* Hold is a local variable,
anything done to it has

N Prototype Staismenis
woid exchanga {inl& numi,
int& numy;
int miain {wakd)
{
i Local Daclaration
int m;
int b;
Statamarta
#xchangs (a.b);
Cout << g et s beeandl;

.u.:..._ o,
1/ main

void wxchEngs (Intd nur, 7

Pass by Reference

* What happens if you
don’t pass by reference.

» Note that rather than
having one common set
of work areas with two
sets of names (a and
numl, b and num?2), there

Int& numa)
no effect on the ¥ Local docaration are four completely
. . . il hold; *
variables in main. tsistomens separate variables (a and
it i b in main and num! and
14 enchange num?2 in exchange).
June 2003 Computer Programming Day One 231 June 2003 Computer

i Prototype Statements
woid axchangs (nt& numi,

& ruma);
ik main (void)

{
Local Declaration
nla;

b
Jf Stalemenis

.uwn-.n_.-ou (A}
cout << @ <s ¥t g bes andl,;

ratum +H
} & mein

\

vold mxchanga (intd nuet,
s numa}

&

Originals unchanged

£y
.-

232

Pass by Reference

.Svmmmvws_:ﬂgﬁamomﬁuﬁﬂﬁﬁﬁa_ N\
int& num2);
the data are sent to mrangoa
exchange. T

nlk

- . i Statements
* Exchange does its B_u ey
perfectly, but thereisno | = ,
change in the original L
. . void exshanga intd num, 7
values in main, a and b are |, s o
Local declaration
unchanged. ot
wo_aa__._:._._n.
2= o

relum;
} i anchangs

June 2003 Cormputer Programming Day One

@

Qriginals unchanged

b

Pass by Reference

* Another simple example,
one that uses both pass-
by-value and pass-by-
reference parameters.

* weneed to write a
function that, given two
numbers, calculates both
the quotient and the
remainder.

* We cannot return two

i Prototype Statemanty
void divide [inl dvnd, i dver,
inth guot, [m& rem);
ink main {voldp
{
Looal Declarstion
intu,
(3-8
nte,
ntd;
A Statamants

divide (ab, 2.0

..GE_.-.P
} 4 i

AN

vold dhvice Gnl - g,
It dhver,
nk3, quo;
Inité. reen

{

H Staternenis
Quol = givned £ chvar,
ramn = dnd % dhar,

awnd diear

values, we use pass by)i
reference for the quotient
u:umo.m_wm HOEN.HSQ@H. Computer Programming ~ Day One

234

Default Parameter Arguments

&

* C++provides the capability to define default values

for parameters.

* When a function with default values is called and one
or more default arguments are missing, the default
values are used just as though they had been passed.

* The default values are used just like and other

initializer except that they are used only when the

parameters are missing,

June 2003 Computer Programming Day One

235

Default Parameter Arguments @

* Default parameters must be declared before the
function s called, if not, there is a compiler error

* For this reason, they are coded in the prototype

declaration.

* Also, coding the default parameters in the prototype
statement provides more complete documentation for

the function.

June 2003

Computer Programming

Day One

235

Default Parameter Arguments @

* three rules for using default parameters.

1. The default value for the parameters can be given only once, either in
the prototype declaration or in the function definition,

2. If some parameters have defaults and some don't, then the default
parameters must be declared last.

3. When calling a function, if a parameter argument is supplied, then all
preceding parameters must also have parameters.
* For example, when using the prototype definition
below, you cannot pass a value for d unless parameters
a, b, and ¢ all have values.
Void fun (inta,intb=0, intc = 1, int d = 2);

June 2003 Compuler Programming Day One 237

Standard Library Functions @

* There are many standard function whose definitions
have been written and we ready to be used in our
programs.

* To use them, you must include their prototype
declarations.

* The prototypes for these functions are grouped
together and collected in several header files

* We simply include the headers at the top of the
program, instead of adding the individual prototypes
of each function in a program.

June 2003 Computer Programming Day Cme 235

Standard Library Functions n“m..\v

* Library function and the linker

awi [woid) ! int main {void}

{

{

1
)

cin=»

cout <<

KE_._._ Q _

S Jfman &
_—

./

code for cout U

June 2003 Computer Programming Day One 239

Standard Library Functions nmm.\v

* The include statement cause the library header file for
standard input and output (iostream.h) to be copied
into your program.

» It declares cin and cout.

* When your program is linked, the object code for

these functions is combined with your code to build
the complete program,

June 2003 Computer Progr i Day Ona 240

Standard Functions for Aﬂwv
Mathematical Manipulation

« Many important library functions are available for
mathematical calculations.

» Most of the prototypes for these functions are in a
header file called <math.h>.

« Two of them, abs and labs, are found in <stdlib.h>

June 2003 Computer Programming Day One 241

abs / fabs / labs QMW

+ These functions return the absolute value of a number.

* An absolute value is the positive rendering of the
value, regardless of its sign.

* For abs the parameter must be an integer, and 1t
returns an integer.

* For labs the parameter must be a long integer, and it
returns a long integer.

» For fabs the parameter is a double, and it returns a
double.

June 2003 Computer Programming Day One 242

abs / fabs / labs &

» The prototype declarations for these three functions
are shown below.

« The abs and labs functions are found in <stdlib.h>.
« The fabs function is found in <math.h>,

Int abs (int number);
long labs (long number);
double fabs (double number);

Examples:

abs (3) = returns 3
fabs (-3.4) = returns 3.4

June 2003 Computer Programming Day One 243

pow @

 The pow function returns the value of the x raised to
the power y — that is, xv.

* An error occurs if the base (x) is negative and the
exponent (y) is not an integer, or if the base is zero
and the exponent in not positive.

» The power prototype is
double pow (double x, double y);

Example:
pow (3.0,4.0) -> returns 81.0
pow(3.4,23) = returns 16.687893

June 2003 Computer Propramming Day One 244

June 2003

@

Scope determines the region of the program in which
a defined object is visible, the part of the program in
which you can use its name.

General Rule of Scope

Scope pertains to any objects that can be defined,
such as a variable or a function prototype declaration.

Tt does not pertain directly to precompiler directives,
such as define statements — they have separate rules.

Scope is a source program concept:
It has no direct bearing on the run-time program.

Computer Programming Day One 245

June 2003

General Rule of Scope

£ This s @ saemple 1o demonatrate scope. The

techergues usad in this sampls should never be
» The global area of your |, wednewses

program consists of all | fesuse ccursanc Giobal Area

statements that are e |

outside functions. o, e fres
. : { if Beginning of nasted block

This mmﬁm provides a fonta "y 15 o

graphical representation = Aroa

of the concept of global 7 End of nasted alock

} it End of main

area and blocks

int fun gint |, Int j)
Il fur's Area

Computer Programming Day One 247

&

* To discuss the concept of scope, we need to review
some concept.

» A block is one or more statements enclosed in a set of
braces.

 Recall that a function’s body is enclosed in a set of
braces, a body is also a block.

* A block has a declarations section and a statement
section.

» This concept give us the ability to nest blocks within
the body of a function and have each one be an
independent group of statements with its own isolated
definitions

June 2003

General Rule of Scope

Computer Programming Day One 246

L

June 2003

General Rule of Scope &vw

/ This ia a sample to damonsiraie scopa. The
Techniques used in this sampla should never ba
used N practce,

“f

An object’s scope extends
from where it is declared
until the end of its block. e

A variable is said to be in oy
scope if it is visible to the

#inchude <lcatream.h>
int fun {int . In B):

int main (void}

Global Araa

Main's Area

{ # Baginning of nastsd block

flost e =y 7 2;
. . i] -] oG
statement being examined. | || == N en

M.Il.-cn

Variables are in scope
from their point of

declaration until the end (o e Area
of their function of block iy

14 tun

Ent of neated biock

i End of mam

Computer Programming Day Cne 248

Global Scope

&

 The global scope is easily
defined.

 Any object defined in the
global area of a program is
visible from its definition
until the end of the program.

e the prototype declaration for
fun is a global definition
because it is visible

This in 2 sumpie i demonstrate scopa. The
tachniques used in this sample should never ba
used In praciice.

“F

#include <lostrsam.h=

Global Area
irrt fun (et m, it B);

inl rmain {void)
{

int a; Main's Area
int b;
flont v;
{ # Baginning of nested block
foata =y /2,
float v, Nestad Block

} i End of main

int fun (int |, int j)
{

Local Scope

» Variables defined within a block have local

* They exist only from the point of their declaration
until the end of the block in which they are declared.

* Qutside the block they are invisible.

&

i a; furn's Area
everywhere in the program 0
14 fun
June 2003 Computer Programming Day One 249
Local Scope &.\v

» two blocks in main.
« Theblock main.

» The nested block is
contained in main, all
definitions in main are
visible to the nested block
unless local variables
with an identical name

 This s & semple to demansiats scops. Tha
hnlquas used in this
usad in practics.
3

#include <iostream.h>
Int fun (i &, Int B);

ple should naver be

Clobal Area

Int main {woid)
{

int &

intb;

float y;

Main's Area

{ # Baginning of nested block
floatm =y /2

End of nestad biock

floal y. MNested Block
foat Area
Nu [R -4

1 u__.m.m:u of maln

int fun (int i, int j)

June 2003 Computer Propramming Day One 250
Local Scope &W
Fad ._.._._-i.anu!.:“l_ﬂnw_o ﬂ.ﬂ..qﬁﬂ.ﬂﬂ.sﬁﬁﬂ;. be
* In the nested block, a ,, o i °
local version of a has finclude <icsssem h> Global Area
. . It fun (i &, int by,
been defined, its type is i v
momﬁ. "“" ”” Main's Area
flost y;
* integer variable a in main ST
is visible from its foaty Nesis Block
declaration until the Temen

declaration of the float
variable a in the nested

H End of nestad block

1 # End of main

It funs (int 1, int j)
m.n.o Qﬂmsﬂg. f:. B; fun's Area @.—OO.—A ﬂ_a a; fur's Area
int j; int §;
3t fun 1 tun
June 2003 Computer Prog 2 Day One 1 June 2003 Computer Programming Day One 252

Local Scope n@w Local Scope @

- T othriaas veed in e samere showsd v bs * We have also defined a F ochrmone wpad i ine aaris shoukd nover b®
« main’s a canno longerbe |, wenemcus. N e a ,, s
referenced in the nested Mnciude <iostreem.h Global Area 9,.\ vanablie a new Minclude <loatrearnfi> Global Araa
block TR variable y. i
. p {
. g% mﬁm._“@a@s.ﬂ E ﬁ:O m.m_nn:._ Main's Area ™ é@ Qﬂmbmm Em MOON.— uwu m_m_wmmﬁ Main's Area
block that references a T Begiing O e biock we used main’s y to set YTy T
. " Ncata =y /i 2 . .o floatm =y /2;
will get the float version. foaty, | Nestod Block the initial value for a. fomy Nesied Block
* At the end of the nested e » This is flagrant disregard e
@.—Oown E@ mowﬂ d 15 no ...:. - WOH. mgngﬂa o
. i Ervd of main ub_ Entt of main
MOHHmﬂH. m MOOMUO g&. Hﬁw.—.w— _ﬁ:—E: {int [, int j HUH.OWH”EE:HW HUH-HH—OHHH—QW M:_—E; ot b, int j)
SCOMeEs VISsIble ima: fun’'s Area int a; fun's Area
MEMWQ a it and should never be used e
g il in practice. e
June 2003 Computer Programming Day One 253 June 2003 Compauter Programming Day One 254

Local Scope n\va Local Scope &\U

Il ;wingu.oﬂﬁnﬂn_gji-:ﬂﬂ.?a bo " .q_.__w_sbanaﬁ_-a&ﬁﬁn.o:u#-.i&anhﬂ.ii be
« Immediately after using y, ., Vesd i practice » Main's variable are) Ve pochon. -
we defined the local Snclude <ioutroam h> Global Arsa visible inside the nested Hinciude <iosiraarm > Global Area
. L | . int main {void) .—U.—OO.W 50 H.@JNO.HMO .m.m H.—. nt main {void)
<Mﬂm_.o=u mm main's <@.Mm%: ﬁ_h” . . o , ot nﬁ_. . o
of y is no longer available. W e. s
. ;@ <m.am—u_@ T mm .—..HO.H A“D-w.ww_ﬂzﬁ_n»wuii Blosk L] ;ﬂ <mhfmmhu—om Qom.:.@a u...—..u. ﬁ“_..ow_nmﬁﬂ___:___nnwﬁzoi biock
. L. float ¥ Nested Block :ol:_.m Nested Biock
redeclared in the block, it is __s,; Arou the block, a, y, and z, a.; . Area
in scope throughout the 5 gt of nested biock exist only for the duration i nd of nested bock
entire block. 3 End of mein of the block and are no } i/ End of main
(e e Aves longer visible after the i e e
iy end of the block. |
3 fun Y tun

June 2003 Computer Prog ing DayOne 255 June 2003 Computer Programming Day One 256

Local Scope @

Logical Data and Operators

&

+ A piece of data is called logical if it conveys the idea

of true or false

 There are two ways to represent logical data in C++
— Boolean type (bool) with its constant identifiers, true and

false

— other data types {such as int and char) to represent logical

data

June 2003

Computer Programming Day One

258

Within the function fun, which— TR sl & oo e T
is coded after main, only its | - "=
variables and any global rclude osrasn > Global Area
" . - Int main {woid)
objects are visible. G S
irt b;
We are free to use any names fosty:
{ Moﬂ.un_ﬂn_:nnn&_ nastad block
we want. “ﬁn e Nested Block
z Area
we chose to use the names a imaen
i End of nestad block
and y, even though they had
* - J #/ End of main
been used in main. oo
This an acceptable practice, i fun's Area
there is nothing wrong with it.| |~
June 2003 Computer Programming Day One 257
& - b
Logical Data in C++ QoW

+ Ifa data item is zero, it is considered false.

» If it is nonzero, it is considered true.

+ This concept of true and false on a numeric scale is

illustrated in this figure.

Logical Operators

N

» C++ has three logical operators for combining logical
values and creating new logical values: not, and, and

or.

* These operators are listed in following table.

Talse Operator Meaning Precedence
! Not 15
frue R frue . && Logical and 5
= : I Logical or 4
| 0
June 2043 Computer Programming Day One 259 June 2003 Corputer Programming Day One 280

not &W

» The not operator (!) is a unary operator.

» It changes a true value (nonzero) to false (zero), and
a false value (zero) to true (one).

not !

X Ix X x
false true zero | 1
rue ' false nonzero 0

Logical C++ Language

June 2003 Computer Programminy Day One 261

and @

« The and operator (&&) 1s a binary operator.

» Since the and is a binary operator, there are four
distinct possible combinations of values in its
operands.

» The result is true only when both operands are true, it
is false in all other cases.

and (&&) &&
X ¥ _ x&&y X ¥ & &y
false | false = false zero Z€ro 0
false true . false Zero nonzero 0
true false | false nonzerc ZETO 0 |
true true true NONZero | NONzero 1
ogical C++ Language
June 2003 Computer Programming Day One 262

or &

» The or operator (|]) is a binary operator

* or is a binary operator, there are four distinct
combinations of values in its operands.

« The result is false if both operands are false, it is true
in all other cases.

or (|)) I
X y x&&y X _ ¥ b &y
false false false Zero . Zero 4]
. false * true true Zera | nonzero i
true mm_wm true nonzero | Zero 1
true true »En . :onw.m_.o nonzero 1
ogical C++ language
June 2003 Computer Programming, Day One 263

Evaluating Logical Expressions Amw

» two methods to evaluate the binary logical
relationships.

+ In the first method, the expression must be
completely evaluated before the result is determined.

» The and expression must be completely evaluated,
even when the first operand is false and it is known
that the result must be false.

* In the or expression, the whole expression must be
evaluated, even when the first operand is true and the
obvious result of the expression must be true.

Tung 2003 Computer Programming Day One 264

Evaluating Logical Expressions Q\WJ

» The second method can set the resulting value as soon
as it is known, without completing the evaluation.

» it operates in a “short-circuit fashion” and stops the
evaluation when it knows for sure what the final
result will be.

« Under this method, if the first operand of a logical
and expression is false, the second half of the
expression is not evaluated because it is apparent that
the result must be false.

June 2003 Computer Programming Day One 265

Evaluating Logical Expressions Awwv

« Although the C++ method is more efficient, it can
cause problems when the second operand contains
side effects.

» for example, the following expression in which a
programmer wants to find the value of the logical
expression and at the same time wants to increment
the value of the second operand:

X && y++

June 2003 Computer Programming Day Cne 267

Evaluating Logical Expressions @

» With the or expression, if the first operand is true,
there is no need to evaluate the second half of the
expression so the resulting value is set true
immediately.

» C++ use this short-circuit method, which is
graphically shown in this figure.

_ false && (anything) 7 7 true || (anything)

false true
June 2003 Computer Programming Day One 266

Evaluating Logical Expressions @

 Everything works fine when the first operand is
nonzero.

+ If'the first operand is zero, the second operand will
never be evaluated and will never be incremented

» The same thing happens in the next example.

» If the first operand is nonzero, the second operand
will never be incremented
X || y++

June 2003 Compuler Programming Day One 268

Evaluating Logical Expressions &W

» the order of the expressions in a logical expression is
important.

« if we always want to increment the variable y, then
we should code then with the increment first, as
shown below.
yt+ && x yH | x

Sune 2003 Computer Programming Day One 269

Relational Operators &W

* Six relational operators support logical relationships.

 They are all binary operators that accept two operands
and compare them.

* The result is logical data, it is always true (1) or false

AOV Operator Meaning Precedence
< Less than

<= ' Less than or equal
> _ Greater than

10

= Greater than or equal

== Equal

1= Not equal
Jung 2003 I g Lay Une 270

Relational Operators A\WW

» Six operators

Relational Operators @

* operator is a complement of another operator in the

— Less than _ group.
Operator Meanin " Precedence
— Less than or equal P L
= Less than complement
— Greater than <= Less than or equal 10 < et - ==
— Greater than or equal > Greater than
— Equal = Greater than or equal complement
== _ :
— Not equal operators . [Bqual
1= Not equal _
__ complement v
T -t | T
June 2003 Comp Progr 2 Day One 271 June 2003 Computer Programming Day One 272

Relational Operators n@

+ to simplify an

Two-Way Selection .@

* The flowchart for two-way decision logic.

false o
- decision
condition
false action 7 true action
I
June 2003 Computer Programming Day One 274

) Original Expression Simplified
EXpression Expression
involving the not (x<) x>=y
and the less than T > 9) ey
operator, we use T 1=y) —
the greater than or

Hx<=y) x>y
equal operator.
H{x>=y) X<y
{x=y) x =y
June 2003 Computer Programming Day One 273
if ... else MM\U

« C++ implements two-way selection with the if ... else
statement.

« Anif ... else statement is a composite statement used
to make a decision between two alternatives.

if ... else &.\v

* The expression can be any C++ expression.

 After it has been evaluated, if its value is true (not
zero), statement 1 is executed. Otherwise, statement 2
1s executed.

» It is impossible for both statements to be executed in

the mm:.ﬁhkmp:j
A
e e
false T [P true -

ﬁnﬁ.& . r...;fmuvamwnw_.._\.ﬁ” . , Talse \.\nxﬂamw,ov.. A._M.._w._qmov \
k e o if (expression) ,ff;f\.\ ' if {expression)
[Il staternent 1 statemnent |

statement 2 : ...m.ﬂw_hswa | else statemems | olae
f - e |_| siatement 2 T e statement 2
— f.*\
{a) Logical Flow (b code {a) Logical Flow (b code
June 2003 Compulet Programming Day Cne 275 June 2003 Computer Programming Day Ome 276

if ... else &W

« These are some syntactical points you must remember
about if ... else statement.

» These points are summarized in the table.

1. The expression must be enclosed in parentheses.

2. No semicolon (;) is needed for an if ... clse statement.
Statement 1 and statement 2 may have a semicolon as
required by their types

3. The expression can have a side effect.

June 2003 Computer Propramming Day One 277

if ... else @

4. Both the true and the false statements can be any statement
or can be a null statement.

5. Both statement 1 and statement 2 must be one and only one
statement. Remember, that multiple statements can be
combined into a compound statement through the use of
braces

6. We can swap the position of statement 1 and statement 2 if
we use the complement of the original expression.

if ... else A\WW

» The second rule is
simple, but it tends to
cause more problems.

The semicolons
belong to the
expression statements
not 1o the if...else
statement

* We have provided an a+h
example in this figure. | ==

June 2003 Computer Programming Day One 279

June 2003 Computer Programming Day One 278
if ... else &\
* each action is a single
statement that either The semicolons
belong to the
m.&&m or mﬁ.@ﬁ..wn_“m H expression statements
from the variable a. |[ir¢i=3) not to the if.else
. a++: statement
» The semicolons else
a--;
belong to the

arithmetic statements,
not the
if ... else.

Tune 2003 Computer Programming Day One 280

if ... else @

* In Rule 3

« It is quite common in C++ to code expressions that
have side effect.

» For example, you will find expressions that read data
as a side effect.

» Consider what happens when we are writing a line
and we want to go to a new line after we have written
ten numbers.

+ A simple solution increments a line count and tests
the limit in the same statement.

June 2003 Computer Programming Day One 281

if ... else Q\MW
* Rule 4 and 5 are closely related.

» The fact that any statement can be used in an if ...
else is straightforward, but often new C++
programmers will forget to use a compound
statement for complex logic.

* Use of compound statements is demonstrated below

f(jl=5&&d=2)
N ~ L _
B -~ m The nmavo_._:ﬁ_ ol
- are treated ;
cout << b; tement HATETUE e
Pfmie ponesmement N
else .. iy)
cout << j; i
cout << j << d;
1 /if else
Jung 2003 Computer Programeing Day One 282

if ... else %.v
w

» The first example shows a compound statement on
for the true condition.

» Rule 6, which states that

if ... else @

These two expressions are the

« The second example shows compound statements for the true and false complements of each other
both conditions. statements can be
. N
« Note that the compound statements begin with an exchanged by If (! Expression) [1f (Expression) [\
open brace and end with a close brace. complementing the else e
7 H(j=sa&kd—2) 7 eXpression, e
_ _
W(31=3) IR We make a (@ ()
{ The compound 4 i e d . Original Complemented
e -t wewaed | SomTeTd complemented if ... else
) /Al . i e N 1 we h
olét . W statement, all we have to
e e do is to switch the true
cout << j<<d;
) ritels and false statements.
June 2003 Computer Prograruming Day One 283 June 2003 Computer Programming Day One 284

NULL else Statement @

« There are always two possible actions after a decision,
sometimes they are not both relevant

« In this case, the false action is usually the one that is
left out

June 2003 Computer Programming Day One 285

NULL else Statement &

» If the false condition is not required — that is, if it is
null — it can be omitted.

= This omission can be shown as a null else statement,
the else statement is simply omitied entirely, as
shown 1n figure.

NULL else Statement Qs

« It is possible to omit the false action, but the true
statement cannot be omitted.

« [t can be coded as a null statement.

« Normally, we do not use null in the true branch of an
if ... else statement.

« To eliminate the true statement, we can use rule 6,
which allows us to complement the expression and
swap the two statement.

June 2003 Computer Programming Day One 287

H (expression) If { expression) 7
{ {
1 =™
else
June 2003 Computer Prograruming Day One 286
AR
NULL else Statement

* This procedure is shown in figure

If (expression) 7 If (lexpression) 7 If (! expression)
a_wwm g n

{
{)
™ else -

Null else

siatement

June 2003 Computer Programming Day One 288

Nested if Statements AA%W.

» When an if ... else is
included within an ![@ .
if ... else, it is known

as a nested if. ,.H. .“_,_

» There is no limit as to e ESCh
how many levels can '”..m\,.|_
\ o

be nested, but if there -

Dangling else Problem @

* Once you start nesting if ... else statements, you encounter a
classic problem known as the dangling else.

* This problem is created when there is no matching else for
every if.

» (C++'s solution to this problem is a simple rule:

» Always pair an else to the most recent unpaired if in the
current block.

¢ This rule may result in some if statement’s being left unpaired.

* An arbitrary rule often does not match your intent, you must
take care to ensure that the resulting code is that you require.

June 2003 Computer Programming Day One 290

are morc than %mm {a) Logic flow (b} Code
they can become
difficult to read.
June 2003 Computer Programming Day One 288
Dangling else Problem &

« From the code

alignment, the (orpresion 7 @ -

programmer intended
the else statement

to be paired with
the first if.

« The compiler will pair
it with the second if as (s) Code) Logic flaw
shown in the flowchart.

June 2003 Computer Programming Day One 291

Dangling ¢lse Problem @

» Use a compound

statement to solve _Aav

if [expreasion |}

{
if (expressict 2)

the dangling else
problem

— xpression 22> -

P .wE.oax:,.u _
i

+ simply enclose the
true actions in braces

to make the second if]

{a} Loglc flow b} Code
a compound ;
statement.

June 2003 Computer Programming Day One 292

Dangling else Problem

» The closing brace
completes the

if{ expremaion 13

(
i (expramaioa 1)

body of the
compound
statement, the if
statement is also
closed and the else
is automatically
paired with the
correct if.

fa) Logic Mow) Code

June 2003 Computer Programuiming Day One

293

Simplifying if Statements

» For example, look at the code in the this table.

Original Statement
if(5)

cout << “Hello";
else

cout << “Bye”;

Simplified Statement

cout << “Hello™;

» The else statement in table can never be executed

because the constant 5 is always true.
« simply eliminate the if ... else.
June 2003

Computer Programiming Day One

&

295

N

« Usually, the purpose of simplification is to provide
more readable code.

» simplifying if ... else statements is to eliminate bad
code

Simplifying if Statements

Jone 2003 Computer Programming ~ Day One 294

Simplifying if Statements

Sometimes the control expression itself can be simplified.
For example, the two statements in the table are exactly the same,

Original Statement Simplified Statement
if(al=0) if(a)

statement statement
if(a=10) if (1a)

statement statement

The simplified statements are much preferred by experienced C++
programmers.

When the simplified code becomes a natural way of thinking, you
have begun to internalize the C++ concept
Tune 2003

Computer Programming Day One 296

Conditional Expressions n@

» C++ provides a convenient alternative to the
traditional if ... else for two-way selection.

« The conditional expression has three operands and
two operators.

» Each operand is an expression.

+ The first operator, a question mark (?), separates the
first two expressions.

» The second operator, a colon (), separates the last
twO expressions.

» The gives it the following format:
expression ? expressionl : expression2

June 2003 Computer Programming Day One 297

Conditional Expressions A\WW

» Let's look at an example.
a=—b?c-:cttH

* In this expression, only one of the two side effects
will take place.

» Ifais equal tob, c-- will be evaluated and 1 will be
subtracted from c; expression2 will be ignored.

June 2003 Computer Programming Day One 209

Conditional Expressions @

* To evaluate this expression, C++ first evaluates the
leftmost expression.

+ If the expression is true, then the value of the
conditional expression is the value of expressioni.

» If the expression is false, then the value of the
conditional expression is the value of expression2.

June 2003 Computer Programming ~ Day One 208

Conditional Expressions @

* On the other hand, if a is not equal to b, then c++ will
be evaluated and 1 will be added to a; expressionl
will be ignored.

» [f this sounds much like a simplified if ... else, it's
because it is!

* This figure shows the flowchart for the expression,
which could easily be coded as an if ... else.

a ical Flow code
Tune 2003 @ Ho.wmﬁnﬁﬂ Programming Day One ® 300

Multiway Selection @

 two different ways to implement multiway selection
in C++.
— using the switch statement.
— using the else-if that provides a convenient style to nest if
statements.
» The switch statement can be used only when the
selection condition reduces to an integral expression.

* When the selection 1s based on a range of values, the
condition is not an integral. In these case, we use the
else-if.

June 2003 Computer Programming Day Ome o

The switch Statement @

« Switch a composite statement used to make a
decision between many alternative.

 The selection condition must be one of the C++
integral types.

* Any expression reduces to an integral value may be
used, the most common is a unary expression in the
form of an integral identifier.

June 2003 Computer Programming Day One 302

The switch Statement n«m\v

» The decision logic for the multimay statement is seen
in figure.

value 4

value |

value 1 7 value 2 value 3 _ value 4

action action ! action
R

'

June 2003 Computer Programming Day One 303

. action _
|

The switch Statement @

* The switch expression contains the condition that is
evaluated.

» For every possible value that can result from the
condition, a separate case constant is defined.

» Associated with each possible case is one or more
statements.

June 2003 Computer Programming Day One 304

The switch Statement

— &

* must be at least one case Még (expression)
statement. case constant-1 : statement
» If you had only one value statement
to O<m_ﬁmﬁ0u use a mmaﬁﬂo caxe constant-2 : statement
if ... else. sitement
* each case expression is cdse constant-n - statement
associated with a constant. e
¢ The w.m%éo& case together | . . ;e
with its constant are known -
4 me
as a case-labeled statement. |} 7 end switch
June 2003 Computer Programrming Cay One 305
The switch Statement @
» There may be one or more |j¥h(erresson) 7
statements for each case. case constant-1 ; statement
statement

» Everything from a case-
labeled statement to the next
case statement is a sequence. statement

» The case label simply

case constant-2 : statement

case constant-n ;. statement

statement

provides an entry point to
start executing the code. dele - statement
statement
} /f end switch
June 2003 Computer Programming Day Cne any

The switch Statement

&

switch (expression)

* The label is a syntactical M

identifier to determine case constant-L ; statement
which statement should statement
be used as the starting case constant-2 ¢ statement
point in the switch & toment
statement.
. . Ccdse constant-n ;- statement
» The case expression 1s S
followed by a colon (:))
faul : statement
and then the statement e et
3 - 4 1 statement
§.ﬂ.— ﬁwﬂmw 1t1s } # end switch
associate
June 2003 Computer Programming Day One

306

The switch Statement

&

* The Default label is a it (expression)
special form of the case constant| ; statement
labeled statement. statement

* If you do not provide a gise constant-2 ; satement
default, the compiler will statement
simply continue with the case constantn ; staemment
statement after the statement
closing brace in the defauls : starement
switch. statement

} /¥ end switch

June 2003 Computer Programming Day One

The switch Statement @

» switch statement is a
series of drawbridges, dr
one for each case and
one for the default. [+ —
1

« one and only one of the T
drawbridges will be .
closed so that there will
be a path for the
program to follow.

I
|
I
E—

]

| o—
.
R
]

June 2003 Computer Programming Day One 309

The switch Statement @

» three different case —labeled statements

switch (printFlag)
{
case |:cour << “do case 1'n";
doCase1(}

break;
1 2 default casc 2; cout << “do case 2n™;
\ “do case 1" \\u..anun-mn_- . \‘..:.,.do,...&o_: \ e.ﬂ.ﬂn?

_ - _ o default cout << “do defauitin™;
- - doDefault);
Cocmr [] [] Towwme]| |, e
_ 1§ switch
I —
() Logic Flow

June 2003 Day One 310

The switch Statement @

» The break statement
causes the program to
jump out of the switch
statement

*» We can add a break as
the last statement in
each case.

14 Laghe Flaw

June 2003 Computer Programiming Day One 311

The switch Statement @

Summarizes some points to remember about the switch
statement.
1. The control expression that follows the keyword switch must be an
integral type.
2. The expression followed by each case label must be a constant

expression, A constant expression is an expression that is evaluated at
compilation time, not run time.

3. No two case labels may have the same value.
4. Two case labels may be associated with the same statements.

5. The default label is not required. If the value of the expression does not
match with any label, the control transfers outside of the switch statement.

6. There can be at most one default label. It may be coded anywhere, but it
is traditionally coded last.

June 2003 Computer Programming Day One 312

The else-if Statement @

« The switch statement only works when the case
values are integral.

« What if we need to make a multiway decision on the
basis of a value that is not integral?

e The answer is the else-if. There is no such C++
construct as the else-if.

* Itis a style of coding that is used when you need a
multiway selection based on a value that is not
integral.

June 2003 Computer Programming Day One 313

The else-if Statement @

 Suppose we require a selection based on a range of
values.

e What we do is code the first if condition and its
associated statements and then follow it with all other
possible values using else-if.

* The last test in the series concludes with an else.

» This is the default condition, it is the condition that is
to be executed if all other statements are false.

June 2003 Computer Programming Day One 314

The else-if Statement @

A sample of the else-if logic design
is provided 1n figure.
* What is different about the

else-if coding?
» It is really nothing more
than a style change.

= Rather than indenting
each if statement,
we code the else-if on
a single line and align
it with the previous if.

June 2003 Computer Programming Day One 315

_ grade ="'F* _

The else-if Statement &.\v

* In this way, we simulate the same formatting that you
see in the switch and its associated case expressions.
* This style format is shown below.
if (score >=90)

grade = ‘A’;
else if (score >= 80)
grade = ‘B’;

June 2003 Computer Programming ~ Day Oue 116

The else-if Statement

» One important point about the else-if:

1t is used only when the
same basic expression is
being evaluated.

* In this figure, the
expressions are all
based on the

variable score.

June 2003 Computer Programming

Day One

317

The else-if Statement nﬁm\v

« If different variables were being evaluated, we would
use the normal nesting associated with the if ... else
statement.

* Do not use the else-if format with nest if statements.

» The else-if is an artificial C++ construct that is only
used when

— The selection variable is not an integral
— The same variable is being tested in the expressions

Tune 2003 Computer Programming Day One 38

