

 1

P4
Report of the program of Apple Chess

Program title: Apple Chesss

Execution file name: apple.exe

Source file name: apple.pas

Time duration: About 9 hours

Objective: This project is to write a program for playing apple chess.

As my teacher hasn’t specified whether we should write human vs. human

or computer vs. human, I chose to write a program for human vs. human.

Only learning Turbo Pascal for Windows as the programming language,

so I use this language to write this program.

Analysis: I first broke the project into several parts:

1. To display the interface for the user

i. The maximum size of the chess board is 10x10

ii. I have to choose whether to use “半形” or “全形” symbols for

displaying the chess board

iii. It is much easier to handle the display “半形” symbols than

those “全形” ones.

2. To get the input by the user

i. Using co-ordinate systems of the chessboard:

1. Easier for me to handle the input

2. Easier to code

ii. Allowing the user to input by arrow keys:

1. Much more user-friendly

2. Harder to code

objectives need more elaboration

can break down into sub-problems, but can consider to provide a flowchart so as to present the connection between parts

 2

P4
3. Using a function or procedure to check the chess whether is

placed in a valid position

iii. I have to check the chess in 8 directions namely N, S, E, W,

NE, NW, SE and SW.

iv. Finding the checking procedures are in similar pattern, so

maybe they can be written into parametric procedure or function

forms.

3. Think of the condition for the player to win, lose or draw.

Count the number of black and white chesses, and the spaces left.

Design:

1. To display the interface for the user

I finally used “全形” symbols for displaying the interface, because it

is much desirable.

I used “for loop” to display the board, beginning from 0 to 10, where

column 0 and row 0 are the co-ordinates, indicating the x-axis and y-axis.

The other elements are in an array of 10x10, storing the condition of

each spaces. The initial state of each element in the array is a blank

(“ “). Say if the board is with a size of n (where n is an odd number),

the element of [n div 2, n div 2], [n div 2 + 1, n div 2 + 1] should

be assigned to one of the colour while the element of [n div 2, n div

2 + 1] and [n div 2 + 1, mid] should be assigned to another color.

2. To get the input by the user

I finally chose to use the inputting of co-ordinate system.

After getting the input, I have to check whether the input is valid

or not.

a. To check whether the entered co-ordinates are valid or not

a clear mind to consider chessboard of odd and even sizes

 3

P4
b. To check whether the space is occupied by another chess

c. To check whether the space is valid or not, ie. after the chess

is placed in the space, can it “eat” the other colour?

I broke down this case into smaller parts :

(1) check whether the chess is surrounded by another color in

any of the 8 directions: N, E, S, W, NE, NW, SE and SW.

(2) if it is surrounded by another color in any of the 8

directions, then check whether it can “eat” in the 8

directions

(3) store which direction it can eat

I think that Step (2) is the most difficult part in this project.

Though the co-ordinates of N, E, S, W can be dealt in a similar

way, I found it is hard for me to implement them into one

parametric function. So I separate them into parts.

Say, the {Check N} part is to check the spaces from the top to

the bottom to see whether there is a chess of the same colour

in the same x-coordinate. Then if there are one or more than one

chess of another colour exist in between the 2 chess, then this

direction is valid for “eat”. The S, E and W checking are in similar

approach.

The NE, NW, SE and SW are in similar implementation, but the

expression of coordinates are different.

Say, the NW direction:

 4

P4

suppose it is now the turn of ●,

if I want to place at (5,4), notified by ◎, then in the program

segment above, x = 5 and y = 4.

As it is now checking in a diagonal direction, I have to calculate

the upper left co-ordinate ie. (1,0). The x-coordinate, z is

determined by the 2nd statement: if x>y then z:=x-y else z:=0;

and the y-coordinate is determined by z-(x-y).

Then I use for loop to implement the checking.

Again, if there are 1 or more than 1 chess of another colour exist

in between the 2 chess, then this direction is valid for “eat”.

 0 1 2 3 4 5 X

0

1 ●

2 ● ●

3 ○ ○ ○

4 ◎

5

Y

3. Think of the condition for the player to win, lose or draw.

i. If the spaces are full, then if the number of black chesses

is more than that of white chesses, black wins and vice versa.

If the number of chesses of both colors are the same, then they

 5

P4
are draw.

ii. If the spaces are not full, but one of the color has no more

chesses, then the other color wins.

Thinking flow chart:

1st hour Formatting the interface

I found there is a problem of displaying the “全形 ”

characters, but I cannot solve it.

Where the program rewrite the board, or when minimize or

maximize the browser, there appears some spaces between

the characters.

there is no such thing of thinking flow chart
it is a record of how the student implement the solution

 6

P4
2nd hour Programming

Thinking of the function checking:

- How to check whether the position is valid in the 8
directions

- N, S, E, W are similar

- NW, SE, NE and SW are a bit tricky.

- Turn over the chess when doing checking.

- Try to using one parametric function to check the
direction N, S, E, and W.

- Haven’t checked for the case of no moves. And some errors
occur in the checking function.

3rd – 6th hr

E.g.: In fact it

should be no more

moves for the black

chess, but

unfortunately, I

can place it on

(3,1).

7th hour - Finding the previous method is inappropriate

- Modify the previous method.

- Checking first, and store which direction and which
position is valid.

- Turn over the chess after checking.

 7

P4
8th hour

- Debug

9th hour - An error in checking is found.

- Debug.

Conclusion & Discussion: Testing can be hardly done as it sometimes

takes a long time to in the case like “no more moves”. And the interface

is not good enough. Using arrow keys to control the cursor is a better

interface but I failed to do it. And it is sometimes confusing to place

the chess at the right space. And because I was not able to write those

similar steps into some parametric functions / procedures, so there

are lots of variables, in result of a confusion.

weak conclusion and discussion

no testing and evaluation at all

