
P5

P5

Objective

 Write a program of Apple Chess game for two players. The chessboard size is fixed to
be 10 by 10. During the game, the players need to follow the rules of the game. At the end
of the game, the program will determine who the winner is and display the result.

 The game is only to be played on the computer with my family, therefore I don’t need to
provide artificial intelligence (A.I.) to the program for human player vs. computer. A 6 by 6
chessboard is too simple, while an 8 by 8 is too common, so I will make the chessboard to be
challenging as 10 by 10.

Analysis of the Problem

 To play the game, the players need to use the mouse to place the chess. However,
Turbo Pascal does not allow mouse movement in DOS mode. Therefore, I have to choose a
programming language which supports Graphical User Interface. Since this is only a game
for leisure, I don’t need Microsoft’s ® professional programming languages like C or Visual
Basic. Instead, I choose Macromedia’s ® Flash MX because of the following reasons:
1. it is very popular;
2. the Action Script of Flash is easier to learn;
3. it is good for writing interactive games;
4. even if the player’s computer is not installed with Flash MX, he can download the Flash

player free of charge from Macromedia and the file size of the Flash player is small.

 From what I learn in Computer Studies, my analysis is that I have to use the top-down
approach and the Apple Chess game program needs the following modules:
1. A start scene to get the players’ name so that the players have a personal feeling when

they see their names on the chessboard while playing the game
2. An array storing data which represent the chessboard
3. Initialize the array with 4 chesses at the centre of the chessboard in the beginning
4. Get player’s input of position of chess
5. Check whether the player’s input of position of chess is valid
6. If the player’s move is valid, then turn another player’s chesses
7. Re-calculate the number of the players’ chesses
8. Check whether the chessboard is full and end the game
9. Before the game ends, check who is the winner or the game is draw

 The flowchart of the logic is shown in Figure 1

justify the choice of the tool - Flash MX

can break down into sub-problems

P5

Start

Get players

name

Display chessboard

with 4 chesses in

middle

Get chess

position

Check valid

move ?

Turn another player’s

chesses

Count the number of

each player’s chesses

End of

game ?

Display winner or

draw
End Yes

No

Yes

No
Figure 1

a correct flowchart depicting the logic of tackling the problem which shows the relationship/connection between different parts

P5

Design of the Solution

 For convenience and simplicity, I used only 4 keyframes to write the game:

Key
Frame
1

Key Frame 1 of the “table” layer is the scene where the players input their names, the default names
are “player 1” and “player 2”

Key
Frame
2

Key Frame 2 is the chessboard where the players place their chesses. All Action Scripts are contained
in this key frame. The right hand side screen capture depicts the colour of chesses with players’
names and the number of chesses of each colour during the game.

Key frame 2 Key frame 2

Key frame 1

P5

Key
Frames
3 and 4

Key frames 3 and 4 display the result at the end of the game.

 Flash only allows 1-dimensional array, but the chessboard is 2-dimensional. Therefore,
I used an array of 100 elements but in my mind I visualized the 1-dimensional 100-elements
array as a 10 by 10 2-dimensional array like the following:

01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45(W) 46(B) 47 48 49 50
51 52 53 54 55(B) 56(W) 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Table 1
 The cells depicted in Table 1 which corresponded to the 45th, 46th, 55th and 56th
elements are used to place the initial 2 white and 2 black chesses.

 All the cells are initialized to contain “nothing”. Then, before the game is started,
the 45th and the 56th elements of the 1-dimensional array are initialized to contain “white”,
and the 46th and the 55th elements of the 1-dimensional array are initialized to contain
“black”.

 Whether a user placed new chess of a new move is valid, the cells in the North, South,
East, West, North-East, South-West, North-West and South-East direction are checked. For
example, to check in the North direction:

Key frame 3 Key frame 4

detailed account of design

P5

function checkN(a) {
 _global.Nfound = 0;
 _global.Na = 0;
 var N = 20;
 if (square[a-10] == colour || a-10<0 || square[a-10] == "nothing") {
 Nfound == 0;
 }
 else {
 while (a-N>=0 && Nfound == 0 && square[a-N]<>"nothing") {
 if (square[a-N] == colour) {
 Nfound = 1;
 Na = a-N;
 } else {
 N = N+10;
 }
 }
 }
}

 The index of the immediate element of the “upper” row is decreased by 10, hence
(a-10). The following table summarizes the index change in different directions:

Directions Index change
N a-10
S a+10
E a+1
W a-1
NE a-9
SW a+9
NW a-11
SE a+11

 If the move is valid, the elements of the opposite player’s chesses will be assigned by
the new colour name.

 After each valid move and turning the opposite player’s chesses, the number of chesses
of each player is re-calculated using the following:

P5

function count() {
 sumwhite = 0;
 sumblack = 0;
 for (i=1; i<=100; i++) {
 if (square[i] == "black") {
 sumblack = sumblack+1;
 }
 if (square[i] == "white") {
 sumwhite = sumwhite+1;
 }
 }
 _root.sumb_txt.text = sumblack;
 _root.sumw_txt.text = sumwhite;
}

 To determine who is the winner or the game is a draw, the following is used:
function Win() {
 if (sumwhite>sumblack) {
 winner_txt.text = player1;
 gotoAndStop(3);
 }
 else if (sumblack>sumwhite) {
 winner_txt.text = player2;
 gotoAndStop(3);
 }
 else{
 gotoAndStop(4);
 }
}

gotoAndStop(3) is the Key Frame 3 which
will display the player name of the winner.

gotoAndStop(4) is the Key Frame 4 which
will display the game is a draw.

words, rather than simply listing pieces of program codes, must be used to describe essential subroutines

P5

Implementation

This is the first scene to get the names of the
players, the default names are “player1” and
“player2”.

After the 2 players enter their names, then
press “GO” to start the game.

This is the display of Key Frame 2, a 10 by
10 chessboard is initialized with 2 white and
2 black chesses placed at the centre of the
chessboard.

The names of the players (John and 小明)
are displayed on the top.

An arrow is used to indicate who the player
of the next turn is.

It is now the turn of 小明 and the arrow is
pointing to the name of the player 2.

During the game, the numbers of white and
black chesses are displayed at the bottom
right corner.

P5

Testing and Evaluation

 The game should be run in Windows 98, XP with Flash Player 6.

 To test whether the Action Script (program) works correctly, the following has to be
tested:
1. Users enter their name, in English or Chinese, and can be displayed on the top of the

chessboard
2. Place chess and it is a valid move if there is no chess occupying the cell and it obeys the

rule of the game
3. Turn another player’s chesses after making a valid move
4. Count the number of black and white chesses manually and check against the numbers

displayed at the bottom right corner of the chessboard
5. Change to another player’s turn after turning chesses
6. When the chessboard is full, the game ends and display the correct winner or whether

the game is a draw

 After playing many times, my game satisfied the 6 criteria of the test plan.

Conclusion and Discussion

 After writing this game, I think the objectives are met. The game can be put on almost
every PC to be played. The game gives the players a feel of user-friendly as the design of
the chessboard is on one hand concise and on the other hand displaying all information such
as players’ names and the number of chesses of each player. The game produced by Flash is
small in terms of file size and therefore can be easily sent to people who are interested in this
game.

 There are cases where no player can make any more valid move before the chessboard is
full and the game is “hang”.

 However, there are rooms for improvement:
1. If time allows, I can try to use the randomize function of Flash to implement a version of

human vs. computer
2. Players should be able to select chessboard of different sizes
3. Play background music to give a soft atmosphere while players are playing
4. Since Flash swf objects can be handled by web browser, an online game version can be

developed so that the two players can play on two different computers through Internet

a test plan provided without concrete evidence of trying out the testing

P5

References

1. Macromedia Flash MX Game Design

Demystified: The Official Guide
by Jobe Makar
2002

2. Flash MX Games: Art to ActionScript

by Nik Lever
2002

Appendix

action script in frame 2
pla1_txt.text = player1;
pla2_txt.text = player2;

function Win(sumwhite,sumblack) {
 if (sumwhite>sumblack) {
 _global.winner= player1;
 gotoAndStop(3);
 } else if (sumblack>sumwhite) {
 _global.winner = player2;
 gotoAndStop(3);
 } else {
 gotoAndStop(4);
 }
}

action script of an object that in frame 2
onClipEvent (load) {
 _global.place = new Array(101);

good to list out referred information

P5

 _global.square = new Array(101);

 tar = new Object();
 for (var i = 1; i<=100; i++) {
 square[i] = "nothing";
 place[i] = i;
 }
 i = 45;
 tar = eval("_root.a"+i);
 tar.gotoAndStop(2);
 _root.a46.gotoAndStop(3);
 _root.a55.gotoAndStop(3);
 _root.a56.gotoAndStop(2);
 square[45] = "white";
 square[46] = "black";
 square[55] = "black";
 square[56] = "white";
 chess = 1;
 colour = "white";
 _root.pl2._visible = 0;
 for (var i = 1; i<101; i++) {
 eval("_root.a"+place[i]).co = i;
 eval("_root.a"+place[i]).onRelease = function() {
 Nfound = 0;
 NEfound = 0;
 Efound = 0;
 SEfound = 0;
 Sfound = 0;
 SWfound = 0;
 Wfound = 0;
 NWfound = 0;
 checkN(this.co);
 checkNE(this.co);
 checkE(this.co);
 checkSE(this.co);
 checkS(this.co);
 checkSW(this.co);
 checkW(this.co);

P5

 checkNW(this.co);
 if ((Nfound == 1 || NEfound == 1 || Efound == 1 || SEfound == 1 ||
Sfound == 1 || SWfound == 1 || Wfound == 1 || NWfound == 1) && (square[this.co]
=="nothing")) {
 this.gotoAndStop(chess+1);
 square[this.co] = colour;
 changechess(this.co);
 count();
 changeplayer();
 }
 };
 }
}
onClipEvent (load) {

 function count() {
 sumwhite = 0;
 sumblack = 0;
 for (i=1; i<=100; i++) {
 if (square[i] == "black") {
 sumblack = sumblack+1;
 }
 if (square[i] == "white") {
 sumwhite = sumwhite+1;
 }
 }
 _root.sumb_txt.text = sumblack;
 _root.sumw_txt.text = sumwhite;
 }
 function checkN(a) {
 _global.Nfound = 0;
 _global.Na = 0;
 var N = 20;
 if (square[a-10] == colour || a-10<0 || square[a-10] == "nothing") {
 Nfound == 0;
 } else {
 while (a-N>=0 && Nfound == 0 && square[a-N]<>"nothing") {
 if (square[a-N] == colour) {

P5

 Nfound = 1;
 Na = a-N;
 } else {
 N = N+10;
 }
 }
 }
 }
 function checkS(a) {
 _global.Sfound = 0;
 _global.Sa = 0;
 var S = 20;
 if (square[a+10] == colour || a+10>100 || square[a+10] == "nothing")
{
 Sfound == 0;
 } else {
 while (a+S<=100 && Sfound == 0 && square[a+S]<>"nothing") {
 if (square[a+S] == colour) {
 Sfound = 1;
 Sa = a+S;
 } else {
 S = S+10;
 }
 }
 }
 }
 function checkE(a) {
 _global.Efound = 0;
 _global.Ea = 0;
 var E = 2;
 if (square[a+1] == colour || ((a+1)%10) == 0 || square[a+1] == "nothing")
{
 Efound == 0;
 } else {
 while (((a+E)%10)>0 && Efound == 0 && square[a+E]<>"nothing") {
 if (Square[a+E] == colour) {
 Efound = 1;
 Ea = a+E;

P5

 } else {
 E = E+1;
 }
 }
 }
 }
 function checkW(a) {
 _global.Wfound = 0;
 _global.Wa = 0;
 var W = 2;
 if (square[a-1] == colour || ((a-1)%10) == 0 || square[a-1] == "nothing")
{
 Wfound == 0;
 } else {
 while (((a-W)%10)>0 && Wfound == 0 && square[a-W]<>"nothing") {
 if (Square[a-W] == colour) {
 Wfound = 1;
 Wa = a-W;
 } else {
 W = W+1;
 }
 }
 }
 }
 function checkNE(a) {
 _global.NEfound = 0;
 _global.NEa = 0;
 var NE = 18;
 if (square[a-9] == colour || a-9<0 || (a-9)%10 == 1 || square[a-9] ==
"nothing") {
 NEfound == 0;
 } else {
 while (a-NE>0 && NEfound == 0 && square[a-NE]<>"nothing") {
 if (Square[a-NE] == colour) {
 NEfound = 1;
 NEa = a-NE;
 } else {
 NE = NE+9;

P5

 }
 }
 }
 }
 function checkSW(a) {
 _global.SWfound = 0;
 _global.SWa = 0;
 var SW = 18;
 if (square[a+9] == colour || a+9>100 || (a+9)%10 == 0 || square[a+9]
== "nothing") {
 SWfound == 0;
 } else {
 while (a+SW>0 && SWfound == 0 && square[a+SW]<>"nothing") {
 if (Square[a+SW] == colour) {
 SWfound = 1;
 SWa = a+SW;
 } else {
 SW = SW+9;
 }
 }
 }
 }
 function checkNW(a) {
 _global.NWfound = 0;
 _global.NWa = 0;
 var NW = 22;
 if (square[a-11] == colour || a-11<0 || square[a-11] == "nothing") {
 NWfound == 0;
 } else {
 while (a-NW>0 && NWfound == 0 && square[a-NW]<>"nothing") {
 if (Square[a-NW] == colour) {
 NWfound = 1;
 NWa = a-NW;
 } else {
 NW = NW+11;
 }
 }
 }

P5

 }
 function checkSE(a) {
 _global.SEfound = 0;
 _global.SEa = 0;
 var SE = 22;
 if (square[a+11] == colour || a+11>100 || square[a+11] == "nothing")
{
 SEfound == 0;
 } else {
 while (a+SE<100 && SEfound == 0 && square[a+SE]<>"nothing") {
 if (Square[a+SE] == colour) {
 SEfound = 1;
 SEa = a+SE;
 } else {
 SE = SE+11;
 }
 }
 }
 }
 function changechess(a) {
 if (Nfound == 1) {
 for (var i = Na; i<a; i += 10) {
 eval("_root.a"+i).gotoAndStop(chess+1);
 square[i] = colour;
 }
 }
 if (Sfound == 1) {
 for (var i = a; i<Sa; i += 10) {
 eval("_root.a"+i).gotoAndStop(chess+1);
 square[i] = colour;
 }
 }
 if (Efound == 1) {
 for (var i = a; i<Ea; i++) {
 eval("_root.a"+i).gotoAndStop(chess+1);
 square[i] = colour;
 }
 }

P5

 if (Wfound == 1) {
 for (var i = Wa; i<a; i++) {
 eval("_root.a"+i).gotoAndStop(chess+1);
 square[i] = colour;
 }
 }
 if (NEfound == 1) {
 for (var i = NEa; i<a; i += 9) {
 eval("_root.a"+i).gotoAndStop(chess+1);
 square[i] = colour;
 }
 }
 if (SWfound == 1) {
 for (var i = a; i<SWa; i += 9) {
 eval("_root.a"+i).gotoAndStop(chess+1);
 square[i] = colour;
 }
 }
 if (SEfound == 1) {
 for (var i = a; i<SEa; i += 11) {
 eval("_root.a"+i).gotoAndStop(chess+1);
 square[i] = colour;
 }
 }
 if (NWfound == 1) {
 for (var i = NWa; i<a; i += 11) {
 eval("_root.a"+i).gotoAndStop(chess+1);
 square[i] = colour;
 }
 }
 }
 function changeplayer() {
 if (chess == 1 && colour == "white") {
 chess = 2;
 colour = "black";
 _root.pl1._visible = 0;
 _root.pl2._visible = 1;
 } else {

P5

 chess = 1;
 colour = "white";
 _root.pl1._visible = 1;
 _root.pl2._visible = 0;
 }
 }

 function Win() {
 if (sumwhite>sumblack) {
 winner_txt.text = player1;
 gotoAndStop(3);
 } else if (sumblack>sumwhite) {
 winner_txt.text = player2;
 gotoAndStop(3);
 }else{
 gotoAndStop(4);
 }
 }

 for (var i = 1; i<=100; i++) {
 if (square[i]<>"nothing") {
 win();
 }
 }
}

