«P¶i¾Ç²ßµû¦ô¸ê·½®w¢wºô¤W¾Ç»P±Ð¤ä´©
¬ÛÃöªº¾Ç¬ìª¾ÃÑ (KS1-S2-2)
¦b¥»¾Ç²ß³æ¦ì¤¤¡A¾Ç¥Í¥u»Ý¥Îª½Æ[ªº¤èªk¿ë»{ª½¨¤¡Bµ¥¸y©Mµ¥Ãä¤T¨¤§Î«K¥i¡A¥H¤U§÷®Æ¶È¨Ñ±Ð®v§@¾Ç¬ìª¾ÃѪº°Ñ¦Ò¡AµL»Ý¥Î§@±Ð¾Çªº¤º®e¡G
¡P µ¥Ãä¤T¨¤§Î¬Oµ¥¸y¤T¨¤§Î
¡P
µ¥Ãä¤T¨¤§ÎÄݵ¥¸y¤T¨¤§Î¤§¦C¡C
(¤E³¹¥Xª©ªÀ½s¿è³¡(1995)¡C¡m¤¤¾Ç¼Æ¾ÇÃã¨å¡n¡C¥x¥_¡G¤E³¹¥Xª©ªÀ¡C¶204¡C)
¡P
µ¥¸y¤T¨¤§Îªº§P©w¡G¦pªG¤@Ó¤T¨¤§Î¦³¨âÓ¨¤¬Ûµ¥¡A¨º»ò¨âÓ¨¤©Ò¹ïªºÃä¤]¬Ûµ¥¡A³oÓ¤T¨¤§Î´N¬Oµ¥¸y¤T¨¤§Î¡C
(¥_¨Ê®v½d¾Ç°|¼Æ¾Ç¨t¡m¤¤¾Ç¼Æ¾ÇÃã¨å¡n½s¼g²Õ(1987)¡C¡m¤¤¾Ç¼Æ¾ÇÃã¨å¡n¡C«n©÷¥«¡G¦¿¦è±Ð¨|¥Xª©ªÀ¡C¶214¡C)
¡P
µ¥Ãä¤T¨¤§ÎÄݵ¥¸y¤T¨¤§Î¤§¦C¡C
(¤E³¹¥Xª©ªÀ½s¿è³¡(1995)¡C¡m¤¤¾Ç¼Æ¾ÇÃã¨å¡n¡C¥x¥_¡G¤E³¹¥Xª©ªÀ¡C¶204¡C)
¡P
Isosceles ¡Ghaving
two sides of equal length, and the angles opposite those sides equal.
(Borrowski,E.J.
& Borwein, J.M.(1989) Dictionary of mathematics. London:Collins)
¡P
An isosceles triangle is usually defined
as a triangle with at least two sides congruent. Because of this an equilateral
triangle is considered to be a special type of isosceles triangle.
(O¡¦Daffer, P.G. & Clemens, S.R. (1992) Geometry: an investigative approach. Reading, Mass: Addison- Wesley.)