PREAMBLE
Page9

1. FOREWORD 102. GUIDE TO THE SYLLABUS$11-13$
2. SYLLABUSTopic Area I Vectors and MechanicsUnit 1 Vectors
1.1 Basic Knowledge
1.2 Vector Addition
(a) Triangle Law and parallelogram law
(b) Properties of vector addition
(i) Commutative law
(ii) Associative law
1.3 Zero Vector, Negative Vector and Vector Subtraction
1.4 Scalar Multiple and its Properties
(a) Associative law
(b) Distributive laws
1.5 Components of Vectors
(a) Resolution of vectors
(b) The unit vectors f, r and k and the resolution of vectors in the rectangular coordinate system
(c) Direction ratios and direction cosines
1.6 Position Vectors and Vector Equation of a Straight Line
1.7 Scalar Product
(a) Definition
(b) Properties of scalar product
(c) Scalar product in Cartesian components
(d) Orthogonality
1.8 Vector Product
(a) Definition
(b) Properties of vector product
(c) Vector product in Cartesian components
(d) Perpendicular vectors and parallel vectors
1.9 Triple Product
(a) Scalar triple product
(b) Vector triple product
1.10 Vector Function, Differentiation and Integration
(a) Vector as a function of a scalar variable
(b) Differentiation of a vector function with respect to a scalar variable
(c) Integration of a vector function with respect to a scalar variable
1.11 Vectors in Polar Coordinates
1.12 Application of Vectors

a) Force as a Vector
 (b) Kinematics in \mathbf{R}^{2}

Unit 2 Statics and Friction
2.1 Forces, Resultant and Resolution of Forces
2.2 Resultant of Parallel Forces, Moments and Couples
2.3 Equilibrium of a System of Coplanar Forces
2.4 Nature of Friction
(a) Laws of friction
(b) Angle of friction
2.5 Equilibrium of Rigid Bodies

Unit 3 Kinematics
3.1 Displacement, Velocity and Acceleration
3.2 Angular Displacement, Angular Velocity and Angular
Acceleration
3.3 Resultant Velocity
3.4 Relative Motion
3.5 Resolution of Velocity and Acceleration Along and Perpendicular to Radius Vector
Unit 4 Newton's Laws of Motion 48 - 52
4.1 Newton's Laws of Motion
4.2 Rectilinear Motion of a Particle under Variable Forces
Unit 5 Momentum, Work, Energy, Power and 53 - 56 Conservation Laws
5.1 Momentum and Conservation of Momentum
5.2 Work, Energy, Power and Conservation of Energy

Unit 6 Impact
6.1 Impulse
6.2 Impact of Elastic Bodies
6.3 Direct Impact
6.4 Impact of a Smooth Sphere on Smooth Surface
6.5 Oblique Impact

Unit 7 Motion of a projectile under Gravity $63-67$
7.1 Motion of Projectile
7.2 Trajectory of Projectile
7.3 Range on an Inclined Plane
7.4 Further Application of Projectile

Unit 8 Circular Motion
8.1 Circular Motion
8.2 Motion in a Vertical Circle

Unit 9	Simple Harmonic Motion	71-76
9.1	Simple Harmonic Motion	
9.2	Damped Oscillation	
9.3	Forced Oscillation	
Unit 10	Motion of a Particle in a Plane	77-79
10.1	Motion of a Particle in a Plane	
Unit 11	Motion of a Rigid Body	80-91
11.1	Centre of Mass (a) Introduction	
	(b) Centre of mass by integration	
	(c) Centre of mass of a composite body	
11.2	Moment of Inertia (a) Introduction	
	(b) Moment of inertia by integration	
	(c) Parallel and perpendicular axes theorem	
	(d) Moment of inertia of a composite body	
11.3	Motion of a Rigid Body about a Fixed Axis (a) Conservation of energy	
	(b) Law of angular momentum	
	(c) Applications	
11.4	General Motion of a Rigid Body	
	(a) Introduction	
	(b) Equation of Motion	
	(c) Rolling and sliding	
	(d) General expression of the kinetic energy of a rigid body	
Topic Ar	a II Differential Equations	
Unit 12	First Order Differential Equations and its Applications	92-97
12.1	Basic Concepts and Ideas	
12.2	Formation of Differential Equations	
12.3	Solution of Equations with Variables Separable	
12.4	Solution of Linear Differential Equations	
12.5	Solution of Equations Reducible to Variables Separable Type or Linear Type	
Unit 13	Second Order Differential Equations and its Applications	98-104
13.1	Classification of Types	
13.2	Principle of Superposition	
13.3	Solution of Homogeneous Equations with Constant Coefficients	
13.4	Solution of Non-homogeneous Equations with	
	Constant Coefficients	
	(a) Complementary function and particular integral	
	(b) Method of undetermined coefficients	

(a) Introduction
(b) Centre of mass by integration

Moment of Inertia
a) Introduction
(c) Parallel and perpendicular axes theorem
(d) Moment of inertia of a composite body
of a Rigid Body about a Fixed Axis
n of energy
momentum

General Motion of a Rigid Body
a) Introduction
(c) Rolin
(d) General expression of the kinetic energy of a rigid body
Topic Area II Differential Equations

Applications

12.1 Basic Concepts and Ideas

Formation of Diferential Equations
2.3 Solution of Equations with Variables Separable
12.4 Solution of Linear Differential Equations
12.5 Solution of Equations Reducible to Variables Separable Type or Linear Type

Applications

Classification of Type
13.2 Principle of Superposition Coefficients
(a) Complementary function and particular integral
(b) Method of undetermined coefficients
13.5 Reduction of Equations to Second Order Differential Equations with Constant Coefficients
13.6 Systems of two First Order Differential Equations
13.7 Applications in Practical Problems

Topic Area III Numerical Methods

Unit 14 Interpolation and Lagrange Interpolating 105-108 Polynomial
14.1 Interpolation and Interpolating Polynomials
14.2 Construction of Lagrange Interpolating Polynomials
14.3 Use of Lagrange Interpolating Polynomial
14.4 Error Estimation of Interpolating Polynomial

Unit 15 Approximation
15.1 Treatment of Errors; their Estimation and Algebraic Manipulation
(a) Three basic types of errors
(i) Inherent error
(ii) Truncation error
(iii) Round-off error
(b) Absolute and relative error
(c) Estimation of errors
(d) Combining errors
15.2 Approximation of Functional Values using Taylor's

Expansion
(a) Taylor's series expansion of a function
(b) Error estimation

Unit 16 Numerical Integration
16.1 Numerical Integration
16.2 Trapezoidal Rule
(a) Derivation of the trapezoidal rule
(b) Estimation of the error
(c) Application of trapezoidal rule
16.3 Simpson's Rule
(a) Derivation of Simpson's rule
(b) Estimation of the error
(c) Application of Simpson's rule

Unit 17 Numerical Solution of Equations 119 - 125
17.1 Method of Fixed-point Iteration
a) Algorithm of the method
(b) The condition of convergence
(c) Estimation of error
17.2 Newton's Method
(a) Algorithm of the method
(b)The condition of convergence and error estimation
(c) Application of Newton's method

Page
Page
17.3 Secant Method
(a) Derivation of the secant method
(b) Application of the secant method
17.4 Method of False Position
(a) Derivation of the method of false position
(b) Application of the method of false position

Topic Area IV Probability and Statistics

Unit 18 Introductory Probability Theory
18.1 Basic Definitions
18.2 Ways of Counting
18.3 Probability Laws
18.4 Bayes' Theorem
18.5 Recurrence Relation
Unit 19 Basic Statistical Measures 132 - 133
19.1 Basic Knowledge
19.2 Calculation of Mean
19.3 Calculation of Standard Deviation and Variance
Unit 20 Random Variables, Discrete and Continuous 134-147

Probability Distribution

20.1 Random Variable
(a) Discrete probability function
(b) Probability density function
20.2 Expectations and Variances
20.3 Binomial Distribution
(a) Binomial trials, Binomial probability
(b) Binomial distribution
(c) Applications
20.4 Normal Distribution
(a) Basic definitions
(b) Standard normal curve and the use of normal table
(c) Applications
(d) Binomial approximated to normal distribution
20.5 Linear Combination of Independent Normal Variables
Unit 21 Statistical Inference 148 -155
21.1 Basic Concept
21.2 Estimation of a Population Mean from a Random Sample
21.3 Confidence Interval for the Mean of a Normal Population with Known Variance
21.4 Hypothesis Testing
21.5 Type I and Type 11 Errors
APPENDIX: MATHEMATICS REFERENCE BOOKS 156-173

