3. SYLLABUS

UNIT 1: Vectors

Specific Objectives:

1. To learn the nature of vectors and their basic properties in \mathbf{R}^{2} and \mathbf{R}^{3}.
2. To be familiar with the basic operations of vectors in \mathbf{R}^{2} and \mathbf{R}^{3}.
3. To learn the differentiation and integration of vectors with respect to a scalar variable.
4. To apply the vector method to solve problems on the resolution and reduction of a system of forces in \mathbf{R}^{2} and \mathbf{R}^{3}.
5. To apply the vector method to solve some kinematic problems in \mathbf{R}^{2}.

	Detailed Content	Time Ratio	Notes on Teaching
$\stackrel{\rightharpoonup}{\perp}^{1.1}$	Basic Knowledge Definition and notation of vectors, magnitude and direction of vectors, equal vectors, parallel vectors and unit vectors.	1	The fundamental concept of vector may have been dealt with in Secondary 5 Physics. Students are able to identify intuitively vectors as physical quantities that possess both magnitude and direction. Teachers should lay emphasis on the difference between scalar and vector quantities. Examples should be given to clarify the concepts. Students are expected to classify physical quantities into vectors (such as displacement, velocity, acceleration, force, impulse etc) and scalars (such as temperature, energy, volume, mass etc). At this stage, it should be emphasized that a vector quantity will change when either its magnitude or direction is changed. (An object travelling in uniform circular motion is a good practical example to illustrate the latter.) It is also essential that students should be acquainted themselves with the representation of a vector geometrically by a directed line segment.

Detailed Content	Time Ratio	Notes on Teaching

ज 1.2
 Vector Addition

(a) Triangle law parallelogram law

The current notations of vectors (such as $\overrightarrow{A B}, \mathbf{A B}, \vec{a}, \mathbf{a})$ and their magnitudes (such as $|\overrightarrow{A B}|,|\mathbf{A B}|,|\vec{a}|,|\mathbf{a}|)$ should be introduced.

Students are also expected to get the concepts of free vectors (e.g. wind velocity vector) and line-localized vectors (e.g. force vector).

With the help of vector diagrams, teachers can guide students to grasp the essential features of equal vectors, parallel vectors and unit vectors. At the same time, teachers should remind students of the difference between equal vectors and parallel vectors. In the former, the vectors must have the same direction and equal magnitude, but in the latter, the vectors may have opposite directions and their magnitudes may not be equal. In case of unit vector, teachers should indicate that since its magnitude is 1 , it is usually used to specify direction. Therefore, $\vec{a}=|\vec{a}| \hat{a}$ where \hat{a} is the unit vector in the direction of \vec{a}.

Triangle law

$\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$
or $\vec{a}+\vec{b}=\vec{c}$

Teachers should remind students that the end-point of the vector \vec{a} must be coincident with the initial point of vector \vec{b}. Moreover, it should be noted that, in general, $|\overrightarrow{A B}|+|\overrightarrow{B C}| \neq|\overrightarrow{A C}|$. Teachers should also indicate that if the points A, B and C above are collinear, the triangle law is still valid although the triangle $A B C$ has vanished. (Refer to the figure below.)
Detailed Content \quad Time Ratio

Detailed Content	Time Ratio	
Example 1		
Addition of free vectors		

ailed Content

(b) Distributive laws $\alpha(\vec{a}+\vec{b})=\alpha \vec{a}+\alpha \vec{b}$ $(\alpha+\beta) \vec{a}=\alpha \vec{a}+\beta \vec{a}$

After understanding the concept of scalar multiple, students should have no difficulty to deduce the following result.

If $\vec{a}=\alpha \vec{b}$, then \vec{a} is parallel to \vec{b} for $\alpha \neq 0$. For $\alpha=0, \vec{a}=\overrightarrow{0}$.
The resolution of vectors in \mathbf{R}^{2} can be introduced with the following example.

$$
\vec{r}=3 \vec{a}+4 \vec{b}
$$

In the example, \vec{r} is resolved into two components $3 \vec{a}$ and $4 \vec{b}$ in the directions of \vec{a} and \vec{b} respectively. This can be generalized to $\vec{r}=\alpha \vec{a}+\beta \vec{b}$ where \vec{a} and \vec{b} are non-collinear vectors in \mathbf{R}^{2} and $\vec{r}=\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}$ where \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors in \mathbf{R}^{3}, for scalars α, β and γ.

Detailed Content	Time Ratio	Notes on Teaching
(b) The unit vectors \vec{i}, \vec{j} and \vec{k} (also denoted as \hat{i}, \hat{j} and \hat{k}) and the resolution of vectors in the rectangular coordinate system. (c) Direction ratios and direction cosines		The unit vectors in the directions of the positive x-, y - and z-axis are denoted by \vec{i}, \vec{j} and \vec{k} respectively. Any vector in \mathbf{R}^{2} or \mathbf{R}^{3} can be expressed in the form $\vec{r}=a \vec{i}+b \vec{j}+c \vec{k}$. Students are required to be familiar with the following properties of vectors in terms of \vec{i}, \vec{j} and \vec{k} : $\begin{aligned} & \|a \vec{i}+b \vec{j}+c \vec{k}\|=\sqrt{a^{2}+b^{2}+c^{2}} ; \\ & \sum_{r=1}^{n}\left(x_{r} \vec{i}+y_{r} \vec{j}+z_{r} \vec{k}\right)=\left(\sum_{r=1}^{n} x_{r}\right) \vec{i}+\left(\sum_{r=1}^{n} y_{r}\right) \vec{j}+\left(\sum_{r=1}^{n} z_{r}\right) \vec{k} \\ & \lambda(a \vec{i}+b \vec{j}+c \vec{k})=(\lambda a) \vec{i}+(\lambda b) \vec{j}+(\lambda c) \vec{k} \end{aligned}$ Students should be reminded that the two vectors $\vec{r}_{1}=a_{1} \vec{i}+b_{1} \vec{j}+c_{1} \vec{k}$ and $\vec{r}_{2}=a_{2} \vec{i}+b_{2} \vec{j}+c_{2} \vec{k}$ are parallel if $\vec{r}_{1}=\alpha \vec{r}_{2}$ or $a_{1}: b_{1}: c_{1}=a_{2}: b_{2}: c_{2}$. A numerical example can help the teachers easily achieve the purpose. From this, students can be guided to discover that the direction (relative to the axes) of the vector $\vec{r}=a \vec{i}+b \vec{j}+c \vec{k}$ is completely defined by the ratio $a: b: c$ which is called the direction ratios of \vec{r}. In the figure below, the angles α, β, γ determine the direction of \vec{r} relative to the axes. $\cos \alpha, \cos \beta$ and $\cos \gamma$ are called the direction cosines of \vec{r}.

Detailed Content	Time Ratio	Teachers should lead students to recognize that a straight line can be fully specified when the position of a point on the line and the direction of the line are known. Basing on this idea, students should be able to deduce the vector equation of a line ($\vec{r}=$ a scalar λ) from the following figure.
for		

(c) Scalar product in Cartesian components
(d) Orthogonality

Students are expected to be familiar with the following commutative law and distributive law of scalar product.

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =\vec{b} \cdot \vec{a} \\
\vec{a} \cdot(\vec{b}+\vec{c}) & =\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}
\end{aligned}
$$

The former can be easily proved from the definition while the latter can be illustrated by using the following figure.

Students are expected to verify themselves:

$$
\begin{aligned}
& \vec{i} \cdot \vec{i}=\vec{j} \cdot \vec{j}=\vec{k} \cdot \vec{k}=1 \\
& \vec{i} \cdot \vec{j}=\vec{j} \cdot \vec{k}=\vec{k} \cdot \vec{i}=0
\end{aligned}
$$

Afterwards they can be asked to prove themselves that the scalar product of two vectors is given by the sum of the products of their corresponding components, i.e.

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} \\
& \text { where } \quad \vec{a}=x_{1} \vec{i}+y_{1} \vec{j}+z_{1} \vec{k} \text { and } \vec{b}=x_{2} \vec{i}+y_{2} \vec{j}+z_{2} \vec{k}
\end{aligned}
$$

At this stage, teachers can ask students what happens to the scalar product of two vectors if they are orthogonal. The following answers are expected.

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=0 \\
x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}=0
\end{gathered}
$$

2. Area of Parallelogram

Area of parallelogram $A B C D$
$=A B \cdot A D \sin \theta$
$=|\overrightarrow{A B} \times \overrightarrow{A D}|$

Students are expected to know the following properties.

$$
\begin{aligned}
& \vec{a} \times \vec{b}=-\vec{b} \times \vec{a} \\
& \vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c} \quad \text { (distributive property) }
\end{aligned}
$$

Formal proofs of these may be omitted.
Students should be able to see that

$$
\begin{array}{ll}
& \vec{a} \times \vec{b}=\left(y_{1} z_{2}-y_{2} z_{1}\right) \vec{i}+\left(x_{2} z_{1}-x_{1} z_{2}\right) \vec{j}+\left(x_{1} y_{2}-x_{2} y_{1}\right) \vec{k} \\
\text { where } & \vec{a}=x_{1} \vec{i}+y_{1} \vec{j}+z_{1} \vec{k} \\
\text { and } & \vec{b}=x_{2} \vec{i}+y_{2} \vec{j}+z_{2} \vec{k}
\end{array}
$$

The determinant expression of vector product, i.e.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=\left|\begin{array}{ll}
y_{1} & z_{1} \\
y_{2} & z_{2}
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
x_{1} & z_{1} \\
x_{2} & z_{2}
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right| \vec{k} \\
& \text { Where }\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
\end{aligned}
$$

only serves for simplicity and its introduction is optional.
Teachers should guide students to deduce the following results

1. \vec{a}, \vec{b} are perpendicular if $|\vec{a} \times \vec{b}|=|\vec{a}| \times|\vec{b}|$
2. \vec{a}, \vec{b} are parallel if $|\vec{a} \times \vec{b}|=0$

Detailed Content			Time Ratio
Triple Product (a) Scalar triple product	2	By considering the volume of a parallelepiped (i.e. bcsin θh), teachers can	
introduce the scalar triple product $\vec{a} \cdot(\vec{a} \times \vec{b})$ (or simply $\vec{a} \cdot \vec{b} \times \vec{c}$). However, students			
should note that the volume of a parallelepiped is actually given by $\|\vec{a} \cdot \vec{b} \times \vec{c}\|$.			

The same approach can be used to show that each of the products $\vec{b} \cdot \vec{c} \times \vec{a}$ and $\vec{c} \cdot \vec{a} \times \vec{b}$ has the same value as $\vec{a} \cdot \vec{b} \times \vec{c}$. Also, by using the commutative property, students should have no problem to see that $\vec{a} \cdot \vec{b} \times \vec{c}=\vec{a} \times \vec{b} \cdot \vec{c}$.

Students should also know that the condition for 3 vectors to be coplanar is $\vec{a} \cdot \vec{b} \times \vec{c}=0$. For students who have learnt determinant, the following formula may also be introduced.

$$
\vec{a} \cdot \vec{b} \times \vec{c}=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

Teachers should emphasize that the brackets in the vector triple product like $\vec{a} \times(\vec{b} \times \vec{c})$ are essential to determine which product is taken first. In order to show that

$$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c} \\
& (\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a},
\end{aligned}
$$

$$
\text { and } \quad(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a},
$$

teachers are advised to choose appropriate Cartesian axes (by rotation if necessary) so that \vec{a}, \vec{b} and \vec{c} can be expressed in the forms:

	Detailed Content		Time Ratio	Notes on Teaching
1.11	Vectors in Coordinates	Polar	2	Knowledge of the radial and transverse components of a vector in polar coordinates is introduced. The radial and transverse unit vectors, \hat{e}_{r} and \hat{e}_{θ} are defined and expressed in Cartesian form as shown below. $\begin{aligned} & \hat{\theta}_{r}=\cos \theta \vec{i}+\sin \theta \vec{j} \\ & \hat{e}_{\theta}=-\sin \theta \vec{i}+\cos \theta \vec{j} \end{aligned}$

When \hat{e}_{r} and \hat{e}_{θ} are vector functions of the time t, the above expressions can then be differentiated with respect to t to arrive at the following results.

$$
\begin{aligned}
& \frac{\mathrm{d} \hat{e}_{r}}{\mathrm{~d} t}=\frac{\mathrm{d} \theta}{\mathrm{~d} t} \hat{e}_{\theta} \\
& \frac{\mathrm{d} \hat{e}_{\theta}}{\mathrm{d} t}=\frac{\mathrm{d} \theta}{\mathrm{~d} t} \hat{e}_{r}
\end{aligned}
$$

Detailed discussion of the position, velocity and acceleration vectors presented in polar coordinates may be left to Section 3.5. However, it is worthwhile, at this stage, for teachers to discuss with students the distinction of employing polar coordinates and Cartesian coordinates in solving problems such as the one shown below.

Example

The position of a particle moving in a plane is given by polar coordinates (r, θ). At time t, $\theta=\omega t$ where ω is a constant. The locus of the particle is determined by the polar equation $r=a e^{\theta}$ where a is a constant.

$$
\begin{aligned}
& \text { Moment of } \vec{F} \text { about } 0 \\
& =\vec{r} \times \vec{F}
\end{aligned}
$$

By considering the total moment of a system of Coplanar forces about a point or about a line in \mathbf{R}^{3}, students are able to identify the line of action of the resultant force of the system of forces in \mathbf{R}^{3}. The following are two examples.

Example 1
$(a, b, 0) .(0, b, c)$ and $(a, 0, c)$ are the Cartesian coordinates of the vertices A, B and C respectively of a triangle. Forces of magnitude and direction equal to $\overrightarrow{B C}, \overrightarrow{A C}$ and $3 \overrightarrow{B A}$ are set along the sides of the triangle.

In this example, students may first be led to express the forces in vector form. After that they should be able to find the resultant of the forces by simple vector addition. Finally, by comparing the total moments of the forces about the origin and the moment of the resultant force about the origin, students may be asked to work out the line of action of the resultant force.

