Specific Objectives:

1. To understand the meaning of displacement, velocity and acceleration, and their corresponding angular quantities.
2. To understand resultant velocity and relative motion.
3. To recognize the radial and transverse component of velocity and acceleration.
4. To solve relevant practical problems.

	Detailed Content		Time Ratio	Notes on Teaching
3.1	Displacement, and Acceleration	Velocity	2	Teachers should revise with students the meaning of displacement, velocity and acceleration. Nevertheless, teachers may try the approach which makes use of the knowledge of vector and calculus. For simplicity, teachers may restrict the motion along the x-axis and take the positive direction to be that of increasing x. In this way, students should have no difficulty to obtain the formulae $v=\frac{\mathrm{d} x}{\mathrm{~d} t}=\dot{x}, \quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\dot{v}=\frac{\mathrm{d}^{2} x}{\mathrm{dt}^{2}}=\ddot{x} \quad \text { or } \quad a=\frac{d v}{d t}=v \frac{d v}{d x} .$

Teachers should remind students of the physical meanings when x, v and a are negative.

For constant acceleration, students should have no problem to derive the following formulae:

$$
\begin{aligned}
& v=u+a t \\
& x=u t+\frac{1}{2} a t^{2} \\
& v^{2}=u^{2}+2 a x
\end{aligned}
$$

The motion of a particle in two dimensions should then be introduced. Teachers should remind students that by taking the components of the displacement, velocity and acceleration of the particle parallel to the x-axis and y-axis, the methods for motion in a straight line in each of these directions can be used. Denoting the displacement of the particle at a point by $\vec{r}=x(t) \vec{i}+y(t) \vec{j}$, students could be led to discover.
and

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t}=\dot{x} \vec{i}+\dot{y} \vec{j} \\
& a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}=\ddot{x} \vec{i}+\ddot{y} \vec{j}
\end{aligned}
$$

from which the magnitude and direction could be easily derived.

Detailed Content	Time Ratio	Notes on Teaching
		At this stage, the use of parametric equations for the motion of a particle whose path is described by an equation in the rectangular coordinates should be emphasized. Students are expected to use the techniques and knowledge of Section 1.10 in the solution of problems. Some of which are as follows. Example 1 The velocity vector \vec{v} (in ms^{-1}) of a particle P starting from a point 0 is given by $\vec{v}=80 \vec{i}+\left(50+10 t^{2}\right) \vec{j}$. The position vector relative to 0 and the acceleration vector of P at time t can be easily obtained by integrating and differentiating \vec{v} respectively. Example 2 The distance between 2 stations is d. A train starts from one station and stops at the next within a time t. If the maximum acceleration or deceleration is a and its highest speed cannot exceed v, show that the least possible value of t is (a) $t=\frac{d}{v}+\frac{v}{a}$ if $d \geq \frac{v^{2}}{a}$ (b) $t=2 \sqrt{\frac{d}{a}}$ if $d<\frac{v^{2}}{a}$ In this example, teachers may guide students to tackle the problem geometrically.

	Detailed Content	Time Ratio	Notes on Teaching
3.4	Relative Motion	8	Example A cargo ship leaves a port and heads $\mathrm{N} 50^{\circ} \mathrm{E}$ at a speed of $25 \mathrm{kmh}^{-1}$ with respect to still water, while a westward sea current drifts at $4.5 \mathrm{kmh}^{-1}$. What is the resultant velocity of the cargo ship? In this example, apart from resolving the velocities in the north and west direction, students could also find the resultant velocity by using the sine rule and cosine rule. Teachers should revise with students the concept of position vector. The idea of relative motion can be introduced by vector approach. Referring to the figure, the position vector of A relative to B is $\vec{r}_{A B}=\vec{r}_{A}-\vec{r}_{B}$ so that $\dot{\vec{r}}_{A B}=\dot{\vec{r}}_{A}-\dot{\vec{r}}_{B}$ i.e. the velocity of A relative to B is $\vec{v}_{A B}=\vec{v}_{A}-\vec{v}_{B}$

It is often convenient to introduce the idea of relative velocity of A to B by 'bringing B to rest' by adding the velocity $-\vec{v}_{B}$ to both A and B, so that the velocity of A relative to B is $\vec{v}_{A}-\vec{v}_{B}$. Relative velocity problems can be solved by using knowledge of trigonometry and vector. Problems involving the interception and the shortest distance between 2 objects are typical examples.

Example 1

A ship is moving due south at $50 \mathrm{kmh}^{-1}$ and from it a second ship B appears to be moving SW at $75 \mathrm{kmh}^{-1}$. Calculate the velocity of B.
In this example teachers can guide students to draw the vector triangle of velocities and use cosine rules and sine rule to find the velocity of B.

Example 2

At noon, a ship S, at the origin is streaming with a velocity vector $10 \vec{j}$. Meanwhile, a second ship S_{2} which has a position vector $\vec{r}=-10 \vec{i}-10 \vec{j}$ is streaming with a velocity vector $20 \vec{i}+25 \vec{j}$.
In this example, students are guided to write the vector equations in time t of the paths of one ship relative to the other. After that, the position vectors of the two ships at closest approach and the distance of closest approach were investigated.

Example 3

A satellite is falling with constant speed $\mathrm{ukmh}{ }^{-1}$ on an east-west path inclined at a fixed
Resolution of Velocity and Acceleration Along and Perpendicular to Radius Vector
angle θ to the horizontal. A ship travelling due west with constant speed $\mathrm{V} \mathrm{kmh}^{-1}$ sights, from a point 0 , the satellite at a height of hkm and a horizontal distance dkm on a bearing NE from 0 .
(a) Write the expressions for
(i) the position vector of the satellite;
(ii) the velocity of satellite relative to 0 .
(b) Find the shortest distance between the ship and the satellite.

This problem may help students integrate what they have learnt in vectors and the concept of relative velocity.

Finally, teachers should also mention to students that relative acceleration of A to B can be defined in a way similar to that of relative velocity, i.e. $\overrightarrow{a_{A B}}=\overrightarrow{a_{A}}-\overrightarrow{a_{B}}$.

Teachers can introduce the radial and transverse components of velocity and acceleration by considering the motion of a particle in a plane using polar coordinates.
Detailed Content \quad Time Ratio
Suppose P is the position of a particle at time t, APB is the path of the particle and the polar coordinates of P are (r, θ).
Then $\overrightarrow{O P}=\vec{r}=r \hat{e}$ where \hat{e}_{r} and \hat{e}_{θ} are the unit vectors in the directions parallel and perpendicular to \vec{r} respectively.
In Section 1.11, students have learnt that $\dot{\hat{e}}_{r}=\dot{\theta} \hat{e}_{\theta}$ and $\dot{\hat{e}}_{\theta}=-\dot{\theta} \hat{e}_{r}$. By direct differentiation, students should have no problem to get the following results
$\dot{\vec{r}}=\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta}$ and $\ddot{\vec{r}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{e}_{r}+\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(r^{2} \dot{\theta}\right) \hat{e}_{\theta}$
Tabulating the results will facilitate students in recognizing the expression

	Radial Component	Transverse component
Velocity	\ddot{r}	$r \dot{\theta}$
Acceleration	$\ddot{r}-r \dot{\theta}^{2}$	$r \ddot{\theta}+2 \dot{r} \dot{\theta}$ or
		$\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(r^{2} \dot{\theta}\right)$

