UNIT 9: Simple Harmonic Motion

Specific Objectives:

1. To recognize simple harmonic motion.
2. To recognize damped and forced oscillation.
3. To solve related problems.

| Detailed Content | Time Ratio | Notes on Teaching | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9.1 | Simple Harmonic Motion | 12 | Teachers may illustrate the concept of simple harmonic motion (S.H.M.) by using
 examples like simple pendulum and simple mass-spring system. |

Students should know that any motion satisfying the equation of motion $\ddot{x}=-\omega^{2} x$ is simple harmonic and they should be aware of the negative sign in the equation. Teachers may relate this unit with Topic Area II (Differential Equations).

After acquiring the relevant concept, teachers should guide students to obtain the fundamental formulae of S.H.M. which are. listed collectively below:
Acceleration $\quad \ddot{x}=-\omega^{2} x$
Velocity $\quad \dot{x}=A \omega \cos (\omega t+\alpha)=\omega \sqrt{A^{2}-x^{2}}$
Displacement $\quad x=A \sin (\omega t+\alpha)$
Period $\quad T=\frac{2 \pi}{\omega}$

Adequate practice is very essential. The following shows some typical problems.

The above equation is a second order differential equation and students should have no problem to solve it if they have learnt Unit 13. Otherwise, teachers may provide students with the solution directly and leave the proof to Unit 13.

Teachers should lead students to discuss the nature of the roots of the above differential equation. This would give rise to the 3 cases: overdamping, underdamping and critical damping. The following figures show some forms for some typical initial conditions.
Detailed Content

	Detailed Content	Time Ratio	Notes on Teaching
9.3	Forced Oscillation	5	In this example, students are expected to show that the equation of motion is $\ddot{x}+2 n \dot{x}+5 n^{2} x=0$ where x is the downward displacement at time t. Teachers can then guide students to solve the equation and find the time when the particle is instantaneously at rest. The driving force $F(t)$ should be in one of the forms $t^{n}, \cos \omega t, \sin \omega t$, e^{ut} or a linear combination of these functions. The following two cases should be discussed: (a) Undamped forced oscillation The equation of motion is $m \ddot{x}+k x=F(t)$. Teachers can discuss with students how to get the general solution and the particular solution. The physical meanings of the solutions should be emphasized. For example, when $F(t)=F_{0} \sin \omega t$, the following are the two cases of the particular solutions.
			1^{x}
			Beats
			Resonance

Detailed Content	Time Ratio	Notes on Teaching
	20	(b) Damped forced oscillation Students should have no difficulty to get the equation of motion $m \ddot{x}+c \dot{x}+k x=F(t)$. The solution of the equation for a given $F(t)$ can be found directly. Moreover, in some cases, students are expected to derive the driving force under a given situation. The following shows an example. Example Two particles of masses m and 2 m respectively, and attached by an inextensible string is hanging over a smooth fixed pulley as shown. A third particle of mass m is then attached to the heavier particle by a spring of modulus k . All particles are released from rest with the spring just unstretched. Investigate the subsequent motions of the particles. In this example, the driving force acting on the third particle is not directly known. Students are expected to find the force themselves with the information given.

