Specific Objectives:

1. To acquire skills in solving some specific first order differential equations.
2. To apply relevant skills of forming and solving first order differential equations in some given physical situations.
3. To be able to interpret the solutions of first order differential equations.

Detailed Content	Time Ratio	Notes on Teaching	
$\mathbf{1 2 . 1}$	Basic Concepts and Ideas	3	Teachers may make use of simple examples like $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x^{3}$ to

introduce the general concept of differential equations (equations containing differential coefficients) and ask students to find the solutions of examples so given. Students should have no problem as those examples can be solved by simple integration. (The solution of the first is given by integrating x^{2} once while that of the second by integrating
x^{3} twice.) But, how about the equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}+y=0$?

For students' interest, teachers may introduce the term 'ordinary differential equation'. But since only one independent variable is considered in this topic area, this can be simply called differential equation if no ambiguity arises.

Students are also expected to recognise the terms 'order', 'degree', 'linear' and 'non-linear' in differential equations. Examples should be given to clarify the various concepts.

The meaning of a solution of a differential equation should be clearly explained. This can be done through examples. For example, $f(x)=e^{2 x}$ is a solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=0$ because $f^{\prime}(x)-2 f(x)=0$.

Students are also expected to identify the number of arbitrary constants in a function. For example, the function given by $c_{1} e^{c_{2}+x}$ appears to contain two arbitrary constants, but in fact it contains only one as we can write $c_{1} e^{c_{2}+x}=\left(c_{1} e^{c_{2}}\right) e^{x}=c e^{x}$ where $c_{1} e^{c_{2}}$ is replaced by the single arbitrary constant c.

For the abler students, teachers can also discuss singular solution with them. For example, $y=c x+\frac{1}{c}$ is the general solution of $y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+1$ while $y^{2}=4 x$ is a singular solution.

Detailed Content	Time Ratio	Notes on Teaching	
12.2	Formation of Differential	2	The emphasis here is on the formation of differential equations from physical

Students should be able to write down the relation $\frac{\mathrm{d} P}{\mathrm{~d} t} \propto \mathrm{P}$ or $\frac{\mathrm{d} P}{\mathrm{~d} t}=k P$ where k, known as the growth constant, is a positive constant.

Students should be able to identify differential equations with variables separable and reduce them to the form $g(y) \mathrm{d} y=f(x) \mathrm{d} x$. Accordingly, students should have no problem to solve the equations by simple integration. Since in many real life applications, people are not so interested in the general solution of a given differential equation but only in the particular solution satisfying a given initial condition, teachers are advised to provide more initial value problems to their students.

There are many physical problems which can lead to first order differential equations of variables separable type. The following are some of them.

1. Population growth

The population of a given species is decreased at a constant rate of n people per annum by emigration. And the population due to birth and death is increased at a constant rate of $\lambda \%$ of the existing population per annum. If the initial population is N people, then the population x people after t years is given by $\frac{d x}{d t}=\frac{\lambda}{100} x-n$.

2. Exponential decay

The rate of decay of a radioactive substance at time t is proportional to the mass $x(t)$ of the substance left at that time. Thus, $\frac{\mathrm{d} x}{\mathrm{~d} t}=-\mu x$ where μ is a positive constant.

Detailed Content	Time Ratio	Notes on Teaching
		3. Law of cooling The rate of change of temperature of a body is proportional to the difference between the temperature of the body and the temperature θ of the surrounding medium. Suppose T is the temperature of the body at time t, then $\frac{\mathrm{d} T}{\mathrm{~d} t}=k(T-\theta)$ where $k<0$. 4. Diffusion A porous pot containing a solution of a substance of concentration of $x \mathrm{mgcm}^{-3}$ is placed in a large vessel containing the same solution but of higher concentration $c \mathrm{mgcm}^{-3}$. The concentration of the solution in the pot will increase due to diffusion. Assuming that c is constant, the rate of increase of concentration of the solution in the pot is proportional to the difference in concentration.

Thus x satisfies the differential equation $\frac{\mathrm{d} x}{\mathrm{~d} t}=k(c-x)$ where k is a positive constant.
5. Evaporation

A wet and porous substance loses its moisture at a rate proportional to the moisture content, $x(t)$. Thus, the equation is $\frac{\mathrm{d} x}{\mathrm{~d} t}=-k x$ where k is a positive constant.
6. Chemical reaction

If the temperature is kept constant, the velocity of a chemical reaction is proportional to the product of the concentration of the substances which are reacting. If x represents the amount of the substance formed in the reaction, then x must satisfy the equation $\frac{\mathrm{d} x}{\mathrm{~d} t}=k(a-x)(b-x)$ where k is a positive constant, while a and b are the original amounts of the two reacting substances respectively.

| Detailed Content | Time Ratio | Notes on Teaching |
| :--- | :--- | :--- | :--- |

