Specific Objectives:

1. To learn the concept of interpolation.
2. To learn Lagrange Interpolating Polynomial.
3. To apply Lagrange Interpolating Polynomial to approximate functions, and estimate the errors.

	Detailed Content	Time Ratio	Notes on Teaching
14.1	Interpolation and Interpolating Polynomials	1	Students are expected to know the meaning of interpolation: Interpolation involves estimating the values of a function $f(x)$ for arguments between x_{0}, x_{1}, \ldots, x_{n} at which the values $f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ are known. They are also expected to know that approximation by polynomial is one of the most heavily used in numerical methods. A polynomial $p(x)$ is used as a substitute for the function $f(x)$ because polynomials are easy to compute, only simple integral powers being involved; their derivatives and integrals are found without much difficulty and are themselves polynomials; roots of polynomial equations are also easy to locate.
14.2	Construction of Lagrange Interpolating Polynomials	3	As an introduction, teachers may demonstrate Lagrange Interpolating Polynomial (L.I.P.), $p_{n}(x)$ for $n=1$. A graph as shown below may be used to give students a physical meaning.

Students should have no problem to see that they are just asked to approximate the curve $y=f(x)$ inbetween x_{0} and x_{1} by the polynomial $p_{1}(x)=a_{1} x+a_{0}$.

Detailed Content	Time Ratio	Notes on Teaching
		Clearly, $p_{1}\left(x_{0}\right)=f\left(x_{0}\right), p_{1}\left(x_{1}\right)=f\left(x_{1}\right)$ and $p_{1}(x)=a_{1} x+a_{0}$.

We have $\quad p_{1}(x)-a_{1} x-a_{0}=0$

$$
f\left(x_{0}\right)-a_{1} x_{0}-a_{0}=0
$$

$$
f\left(x_{1}\right)-a_{1} x_{1}-a_{0}=0
$$

Eliminating a_{0} and a_{1}, we get

$$
p_{1}(x)=f\left(x_{0}\right) \frac{x-x_{1}}{x_{0}-x_{1}}+f\left(x_{1}\right) \frac{x-x_{0}}{x_{1}-x_{0}}
$$

Similarly, teachers may proceed with the aid of a graph like that above to derive the second-degree L.I.P. and obtain

$$
p_{2}(x)=f\left(x_{0}\right) \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}+f\left(x_{0}\right) \frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}+f\left(x_{2}\right) \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
$$

In a similar manner the third-degree polynomial can also be deduced. For students' interest, the term 'Lagrange Multiplier Function' may be introduced.

Finally, teachers could help students to draw the conclusion that $p_{n}(x), \mathrm{n}=1,2,3$, is of degree n and that $p_{n}\left(x_{i}\right)=f\left(x_{i}\right)$ at the $\mathrm{n}+1$ tabulated points xi The extension of this fact to the general case is not a necessity.

The use of L.I.P. should be demonstrated with examples.

Example 1

Given the four values of an unknown function at $0,1,2,4$ as shown in the table.

x_{k}	0	1	2	4
y_{k}	1	1	2	5

