UNIT 15: Approximation

Specific Objectives:

1. To learn the idea of approximation and the treatment of error.
2. To learn Taylor's series expansion.
3. To apply Taylor's series expansion to approximate functions and estimate the resulting errors.

	Detailed Content	Time Ratio	Notes on Teaching
			3. Exponentiation If $F=a^{k}$ then $\max \left\|\frac{\Delta F}{F}\right\|=k\left\|\frac{\Delta a}{a}\right\|$. The following examples are relevant. Example 1 Two masses are measured to be $(100.0 \pm 0.4) \mathrm{g}$ and $(94.0 \pm 0.3) \mathrm{g}$. Calculate the maximum absolute error in the sum and difference in the masses. Example 2 The time period T of a simple pendulum is given by $T=2 \pi \sqrt{\frac{\ell}{g}}$, where ℓ is the length of the pendulum and g is the acceleration of free fall due to gravity. A pendulum of length 0.600 m is used to determine the value of g . The value of T was found to be 1.55 s . Calculate the maximum percentage error in g.
Ј 15.2	Approximation of Functional Values using Taylor's Expansion (a) Taylor's series expansion of a function	6	Students may be motivated to find a polynomial $p(x)$ which has, for a single argument x_{0}, the values of the polynomial and its derivatives matching those of a function $f(x)$ i.e. $p^{(i)}\left(x_{0}\right)=f^{(i)}\left(x_{0}\right), i=0,1,2, \ldots, n$. By writing $p(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots \ldots+a_{n}\left(x-x_{0}\right)^{n}$ teachers may guide students to arrive at the Taylor's series expansion of $f(x)$, $p(x)=\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{0}\right)}{i!}\left(x-x_{0}\right)^{i}$. This idea may then be extended to the representation of a function by an infinite Taylor's series $f(x)=f\left(x_{0}\right)+f^{(1)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)}{1!}+f^{(2)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{2}}{2!}+\ldots \ldots+f^{(n)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{n}}{n!}+\ldots \ldots$

Detailed Content	Time Ratio	Notes on Teaching
		The following may then be taken as examples for illustration.
	$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots \ldots$.	
	$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots \ldots$.	
	$e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \ldots$.	

(b) Error estimation

Exponentiation
If $F=a^{k}$ then $\max \left|\frac{\Delta F}{F}\right|=k\left|\frac{\Delta a}{a}\right|$. The following examples are relevant.
Example 1
Two masses are measured to be $(100.0 \pm 0.4) \mathrm{g}$ and $(94.0 \pm 0.3) \mathrm{g}$. Calculate the maximabsele erorin the

Example 2
The time period T of a simple pendulum is given by $T=2 \pi \sqrt{\frac{\ell}{g}}$, where ℓ is the length of the pendulum and g is the acceleration of free fall due to gravity. A pendulum of length 0.600 m is used to determine the value of g . The value of T was found to be 1.55 s . Calculate the maximum percentage error in g .

Students may be motivated to find a polynomial $p(x)$ which has, for a single argument x_{0}, the values of the polynomial and its derivatives matching those of a function
i.e. $p^{(i)}\left(x_{0}\right)=f^{(i)}\left(x_{0}\right), i=0,1,2, \ldots, n$.

By writing $p(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots \ldots+a_{n}\left(x-x_{0}\right)^{n}$ teachers may guide students to arrive at the Taylor's series expansion of $f(x)$,
$p(x)=\sum_{i=0}^{n} \frac{f^{(i)}\left(x_{0}\right)}{i!}\left(x-x_{0}\right)^{i}$. This idea may then be extended to the representation of a unction by an infinite Taylor's series

$$
f(x)=f\left(x_{0}\right)+f^{(1)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)}{1!}+f^{(2)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{2}}{2!}+\ldots \ldots+f^{(n)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{n}}{n!}+\ldots \ldots
$$

At this stage it is worthwhile to mention Macclaurin series as a special case of Taylor's series. For the abler students, teachers may discuss with them the region of convergence for a Taylor's series as follows.

Taking $x_{0}=1$ in the expansion of $\ln x$, students should get

$$
\ln x=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\ldots \ldots
$$

Putting $x=1$ and 2 , they would get easily that

$$
\ln 1=0 \text { and } \ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots \ldots
$$

Then teachers may ask them to substitute $\mathrm{x}=0$ and 3 into the expansion and then lead them to discover that they are not convergent.

Afterwards, students may be asked to evaluate some functions at some arguments within the region of convergence. It is preferable to ask students to expand a function in Taylor's series up to the fourth derivative only and do the evaluation correspondingly. Functions such as $y=(1+x)^{2} \ln (1+x)$ are typical examples.

Students are expected to recall the term truncation error as occurs in approximating a function using Lagrange Interpolating Polynomial. The remainder, R_{n} in Lagrangian form, could be shown or derived (for abler students only) to be

$$
R_{n}=f^{(n)}(\varepsilon) \frac{\left(x-x_{0}\right)^{n}}{n!} \text { where } \varepsilon \text { lies between } x_{0} \text { and } x \text {. }
$$

Detailed Content	Time Ratio	Notes on Teaching
$\stackrel{\rightharpoonup}{\omega}$		Students should have no difficulty in seeing that the maximum error by truncating a series is given by $\left\|R_{n}\right\| \leq\left\|M \frac{\left(x-x_{0}\right)^{n}}{n!}\right\|$ where $M=\max \left\|f^{(n)}(\varepsilon)\right\|$ for every ε between x_{0} and x. Given this error term, students may be asked to do examples like estimating the maximum error committed if 3 terms in the series expansion of $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \ldots$ are used to evaluate $\cos \frac{\pi}{3}$, and finding the number of terms of the Taylor's series expansion of $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \ldots$ to evaluate e so that the maximum error is less than 0.0001 .
	12	

