Specific Objectives:

1. To learn Trapezoidal rule and Simpson's rule.
2. To apply Trapezoidal rule and Simpson's rule in numerical integration and estimate their errors.

	Detailed Content	Time Ratio	Notes on Teaching
16.1	Numerical Integration	1	The importance of numerical integration may be appreciated by noting how frequently the formulation of problems in applied mathematics involves derivatives. It is then natural to anticipate that the solutions of such problems will involve integrals. Students are expected to know that for most integrals no representation in terms of elementary functions is possible, and approximate integration becomes necessary. For example, the integrals $\int \frac{\sin x}{x} \mathrm{~d} x$ and $\int e^{-x^{2}} \mathrm{~d} x$ are difficult to find analytically. Students should be taught that polynomial approximation like the Lagrange Interpolating Polynomial method serves as the basis for the two integration formulae, namely Trapezoidal rule and Simpson's rule, studied in this course, the main idea being that if $p(x)$ is an approximation to $f(x)$, then $\int_{a}^{b} p(x) \mathrm{d} x \approx \int_{a}^{b} f(x) \mathrm{d} x$
16.2	Trapezoidal Rule (a) Derivation of the trapezoidal rule	6	One way of motivating students to the learning of Trapezoidal rule is by appealing to the geometry of the rule, which uses a series of trapezoids to approximate the area in question. A known definite integral such as $\int_{1}^{2} x^{2} d x$ can be used to demonstrate that the rule works well providing good accuracy if the number of trapezoids is sufficient. It is easy for students to derive the Trapezoidal rule for the integral $\int_{a}^{b} f(x) \mathrm{d} x$ with n trapezoids to be

Detailed Content	Time Ratio	Notes on Teaching
		$\begin{aligned} \int_{a}^{b} f(x) \mathrm{d} x & \approx \frac{w}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots \ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \\ & =\frac{w}{2}\left[f\left(x_{0}\right)+2 \sum_{k=1}^{n-1} f\left(x_{k}\right)+f\left(x_{n}\right)\right] \end{aligned}$ where $x_{0}=a, x_{n}=b$ and $w=\frac{b-a}{n}$. Alternatively, the derivation may be done by linear interpolation in each interval. For example, in the subinterval $\left[x_{0}, x_{1}\right]$. $\begin{aligned} \int_{x_{0}}^{x_{1}} f(x) \mathrm{d} x & \approx \int_{x_{0}}^{x_{1}} p(x) \mathrm{d} x \\ & =\int_{x_{0}}^{x_{1}}\left[f\left(x_{0}\right)\left(\frac{x-x_{1}}{x_{0}-x_{1}}\right)+f\left(x_{1}\right)\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)\right] \mathrm{d} x \\ & =\frac{w}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right] \text { where } w=x_{1}-x_{0} \end{aligned}$

By summing the area in all the subintervals, students could obtain the same formula for Trapezoidal rule as before.

It is interesting to note what kind of accuracy may be expected for a given function. Teachers may guide students to derive the maximum error as follows.

Consider the ith trapezoid of a trapezoidal integration, which lies between x_{i-1} and x_{i}, two points at a distance $w=\frac{b-a}{n}$ apart. Assume $F(x)$ is the primitive function of $f(x)$. Then, teachers may ask students to give the exact value of the integral
$\int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x \quad\left(=F\left(x_{i}\right)-F\left(x_{i-1}\right)\right)$ and the calculated value $\left(=\frac{w}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]\right)$.
Defining the error on this trapezoid as

$$
E_{i}=\frac{w}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]-\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right]
$$

(b) Estimation of the error
eachers should also remind students that the number of subintervals (or strips) used in Simpson's rule must be even, but there is no such restriction in Trapezoidal rule.

In a similar way to Trapezoidal rule, the truncation error of Simpson's rule may also be derived using Taylor's series expansion of $f(x)$ and the usual assumptions being made as before. It is not too difficult though a bit more tedious for students themselves, with some guidance from teachers, to arrive at the maximum total error term
$\left|E_{T}\right|=(b-a) \frac{w^{4}}{180} M$ where $w=\frac{b-a}{2 n}$ and $M=\max \left|f^{(4)}(\varepsilon)\right|$ for ε in the range of
integration.

