UNIT 16: Numerical Integration

Specific Objectives:

115

- 1. To learn Trapezoidal rule and Simpson's rule.
- 2. To apply Trapezoidal rule and Simpson's rule in numerical integration and estimate their errors.

		Detailed Content	Time Ratio	Notes on Teaching				
	16.1	Numerical Integration	1	The importance of numerical integration may be appreciated by noting how frequently the formulation of problems in applied mathematics involves derivatives. It is then natural to anticipate that the solutions of such problems will involve integrals. Students are expected to know that for most integrals no representation in terms of elementary functions is possible, and approximate integration becomes necessary. For example, the integrals $\int \frac{\sin x}{x} dx$ and $\int e^{-x^2} dx$ are difficult to find analytically.				
114				Students should be taught that polynomial approximation like the Lagrange Interpolating Polynomial method serves as the basis for the two integration formulae, namely Trapezoidal rule and Simpson's rule, studied in this course, the main idea being that if $p(x)$ is an approximation to $f(x)$, then $\int_{a}^{b} p(x) dx \approx \int_{a}^{b} f(x) dx$				
	16.2	Trapezoidal Rule (a) Derivation of the trapezoidal rule	6	One way of motivating students to the learning of Trapezoidal rule is by appealing to the geometry of the rule, which uses a series of trapezoids to approximate the area in question. A known definite integral such as $\int_{1}^{2} x^{2} dx$ can be used to demonstrate that the rule works well providing good accuracy if the number of trapezoids is sufficient. It is easy for students to derive the Trapezoidal rule for the integral $\int_{a}^{b} f(x) dx$ with <i>n</i> trapezoids to be				

Detailed Content	Time Ratio	Notes on Teaching
		$\int_{a}^{b} f(x) dx \approx \frac{w}{2} \Big[f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n}) \Big]$ $= \frac{w}{2} \Big[f(x_{0}) + 2 \sum_{k=1}^{n-1} f(x_{k}) + f(x_{n}) \Big]$ $b = a$
		where $x_0 = a$, $x_n = b$ and $w = \frac{a}{n}$.
		Alternatively, the derivation may be done by linear interpolation in each interval. For example, in the subinterval $[x_0, x_1]$.
		$\int_{x_0}^{x_1} f(x) dx \approx \int_{x_0}^{x_1} p(x) dx$ = $\int_{x_0}^{x_1} \left[f(x_0) \left(\frac{x - x_1}{x_0} \right) + f(x_0) \left(\frac{x - x_0}{x_0} \right) \right] dx$
		$J_{x_0} \begin{bmatrix} v & 0 & (x_0 - x_1) & v & (x_1 - x_0) \end{bmatrix}$ = $\frac{w}{2} [f(x_0) + f(x_1)]$ where $w = x_1 - x_0$
		By summing the area in all the subintervals, students could obtain the same formula for Trapezoidal rule as before.
(b) Estimation of the error		It is interesting to note what kind of accuracy may be expected for a given function. Teachers may guide students to derive the maximum error as follows. Consider the <i>i</i> th trapezoid of a trapezoidal integration, which lies between x_{i-1} and
		x_i , two points at a distance $w = \frac{b-a}{n}$ apart. Assume $F(x)$ is the primitive function of
		f(x). Then, teachers may ask students to give the exact value of the integral
		$\int_{x_{i-1}}^{x_i} f(x) dx (=F(x_i)-F(x_{i-1})) \text{ and the calculated value } \left(=\frac{w}{2} \left[f(x_{i-1})+f(x_i)\right]\right).$
		Defining the error on this trapezoid as
		$E_{i} = \frac{W}{2} \Big[f(x_{i-1}) + f(x_{i}) \Big] - \Big[F(x_{i}) - F(x_{i-1}) \Big]$

Detailed Content	Time Ratio				No	tes or	Teac	hing					
		and using Tayl be guided to di	or's series scover	expa	nsion	of f(x	к _{і–1}) а	and F	=(<i>x_{i-1}</i>)	abou	ıt x _i	studer	nts could
						$E_i \approx \frac{v_i}{2}$	<u>/</u> _f"(ε	; _i)					
		By summing th error as	e errors in	all th	e subi	nterva	- ls, stu	dents	should	d be a	ble to	obtain	the total
		Maximum	total error	= <i>E</i> ₇	- =(b-	-a) <u>w</u> ² 12	2 - <i>M</i> w	vhere	<i>M</i> = n	nax <i>f"</i> ((ε) fo	rεint	he range
(a) Application of		of integration.		o otra	aaad	Com		vomel				utation	oforce
(c) Application of trapezoidal rule		work done by v given to studer	ariable for ts for illust	ce and ration	d dista . The f	nce co followi	non e: overed ng are	l by a p some	article of the	with generation with generation with a second secon	given v	velocity	y, can be
		Example 1											
		A curve is give speed.) Studen	n by the po its may be	oints f requii	tabulat ed to	ted in calcula	the ta ate the	ble. (<i>t</i> e distai	is the	time t vered	travelle betwe	ed and en t=	l <i>v</i> is the 0 and
		t = 4.0.	t (hours)	0	0.5	10	15	2.0	25	3.0	35	40]
			$v (kmh^{-1})$	23	20	15	11	12.5	15	18	20	22	
		Example 2	v (kiini)	20	20	15		12.5	10	10	20	22]
		Use the trapez	zoidal rule	with	four e	qually	spac	ed or	dinate	s to e	stimat	e the	value of
		$\int_0^1 e^{\sqrt{x}} dx \ \text{to}$	3 significar	it figu	res.								
		Example 3 How small an it	otorvalww	ould	ha raa	uirod t	o obta	ain In S		et to /	1 decir	nal nia	0.0052
				ouiu	be leq	uneu i	0 0018	ann nn 2			t uech	nai pia	1005 !
		Example 4	• 2										
		Evaluate the ir	ntegral \int_{1}^{2}	$\frac{1}{1+x^2}$	<u>-</u> dx	using	Trape	ezoidal	rule	with a	n acc	uracy	of 0.001
		and check the	answer aga	ainst t	he tru	e value	э.						

		Detailed Content	Time Ratio	Notes on Teaching				
	16.3	Simpson's Rule (a) Derivation of Simpson's rule	6	The derivation can be done using the second-degree L.I.P., but the geometrical meaning must be emphasized. Students should be able to realize that approximation by a series of parabolic segments would, in general, more closely match a given curve $y = f(x)$ than would the straight lines in the Trapezoidal method.				
117				y parabola y = f(x) x Students may be guided to derive Simpson's rule with 2 <i>n</i> strips as y \int_{0}^{b} w \int_{0}^{n} \int_{0}^{n-1}				
		(b) Estimation of the error		$\int_{a}^{1} f(x) dx \approx \frac{1}{3} \left[\frac{f(x_0) + 4}{k=1} \frac{f(x_{2k-1}) + 2}{k=1} \sum_{k=1}^{1} \frac{f(x_{2k}) + f(x_{2n})}{k} \right]$ where $x_0 = a$, $x_n = b$ and $w = \frac{b-a}{n}$. Teachers should also remind students that the number of subintervals (or strips) used in Simpson's rule must be even, but there is no such restriction in Trapezoidal rule. In a similar way to Trapezoidal rule, the truncation error of Simpson's rule may also be derived using Taylor's series expansion of $f(x)$ and the usual assumptions being made as before. It is not too difficult though a bit more tedious for students themselves, with some guidance from teachers, to arrive at the maximum total error term $ E_T = (b-a) \frac{w^4}{180}M$ where $w = \frac{b-a}{2n}$ and $M = \max f^{(4)}(\varepsilon) $ for ε in the range of integration.				

Detailed Content	Time Ratio	Notes on Teaching
(c) Application of Simpson's rule		Basically, the kinds of problems resemble those of Trapezoidal rule. Here the emphasis, apart from the application of the technique itself, should be placed on the comparison of the degree of accuracy between the two formulae. Two examples follow.
		Example 1
		Evaluate the integral $\int_{0}^{\frac{\pi}{6}} \ln(\cos x) dx$ by Simpson's rule. Find the least number of strips
		required so that the error is less than 10^{-6} in magnitude.
		Example 2
		Find the value of the integral $\int_{1}^{2} \frac{1}{1+x^2} dx$ using both Trapezoidal and Simpson's rule
		with 6 strips. Compare their accuracy with the standard result.
	13	