Specific Objectives:

1. To know the use and the importance .of probability in daily life.
2. To learn the basic laws of probability and their applications in real-life problems.

| Detailed Content | Time Ratio | Notes on Teaching |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 8 . 1} \quad$Basic Definitions
 Sample points, sample | | |
| $\stackrel{l}{\text { space, equiprobable space, }}$probability of events | Students may have learnt some of the concepts in this sub-topic. However, since | |
| these concepts are essential for the study of this topic area, a brief discussion is | | |
| worthwhile to recall and consolidate what they have learnt. | | |
| Students should be familiar with the meaning of sample space and event. Sample | | |

Teachers should remind students of the meaning of equiprobable space. In the previous example, the former sample space is equiprobable while the latter is not. The following example may also be used for illustration.

Example

A man who goes to work every day mayor may not be killed in a traffic accident. However, the probability that he will be killed in a traffic accident when he is going to work one day is not equal to \} because the two outcomes ('killed' and 'not killed') are not equally likely to happen.

Once the concept is clarified, students can be led to recall the definition of probability:
$P(E)=\frac{n(E)}{n(S)}$ where E is the event, S is the equiprobable sample space
Teachers should emphasize that $0 \leq P(E) \leq 1$. The cases of certainty $(P(E)=1)$ and impossibility $(P(E)=0)$ should also be discussed.

| Detailed Content | Time Ratio | Notes on Teaching |
| :---: | :---: | :---: | :---: |
| 18.2 | 5 | To facilitate the finding of the number of outcomes, different ways of counting
 should be introduced. One of the ways of counting is the Multiplication Principle as | shown below.

It is possible to form $n_{1}, n_{2}, \ldots \ldots, n_{r}$ ordered r tuples $\left(a_{j_{1}}, \ldots \ldots, x_{j_{r}}\right)$ containing one element of each kind.

Example
Suppose that the students of a certain school are classified according to sex, age and the house to which they belong. If there are 4 houses, 5 age groups, then there are 2×4 $\times 5=40$ groups in all.

Other ways of counting include Permutation and Combination and their related formulae such as

$$
\begin{gathered}
P_{r}^{n}=\frac{n!}{(n-r)!}, \quad C_{r}^{n}=\frac{n!}{(n-r)!r!} \\
C_{r}^{n}=C_{n-r}^{n} \quad \text { and } \quad C_{r}^{n}+C_{r+1}^{n}=C_{r+1}^{n+1}
\end{gathered}
$$

should be clearly taught. Emphasis should be laid on the difference between Permutation and Combination. Examples such as finding the probability that each of n cells will be occupied when n balls are randomly placed in them, and the probabilities of winning different prizes in Mark Six will help students to consolidate the idea of the ways of counting.

Students are only required to master the basic techniques of using permutations and combinations to solve simple problems. It is not worthwhile for the teachers to put too much effort on this topic.

Detailed Content	Time Ratio	Notes on Teaching
N		Teachers should teach the meaning and notation of conditional probability through examples. Now, teachers should introduce to students the cases of dependent events and events that are not mutually exclusive. The sum and product rules then respectively become $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ and $P(A \cap B)=P(A) \cdot P(B \mid A)$. The general formula for $P\left(E_{1} \cap E_{2} \cap \ldots . . \cap E_{n}\right)$ may be discussed. Also it is worthwhile to mention that two events A, B are independent if and only if $P(A \mid B)=P(A)$ or $P(A \cap B)=P(A) \cdot P(B)$. In handling problems of which the outcomes can occur in a finite number of ways, tree diagram is an efficient way to enumerate all the possible outcomes. Appropriate examples should be chosen to demonstrate the use of the rules. The following are some possible examples: Example 1 A bag A contains 4 red and 6 black balls, and a bag B contains 6 red and 4 black balls. A ball (first ball) is drawn at random from A and placed In B. After mixing, a ball (second ball) is drawn at random from B and placed in A . Finally, a ball (third ball) is drawn from A. In this example, teachers may ask students to find the probability that ith ball is red ($\mathrm{i}=$ $1,2,3)$. Students may be reminded that all the possible outcomes can be represented graphically using a tree diagram. Example 2 John is available to meet his friend at home during the weekend (Friday to Sunday). Given that the probability Mary goes to visit John on Friday is $\frac{1}{q}$. On each of the other two days, the probability that she goes, given that she has gone the previous day, is $\frac{1}{m}$ and the probability that she goes, given that she has not gone the previous day, is $\frac{1}{n}$. The possible questions in this example include finding the probability that Mary goes on Sunday, and finding $P(B \mid A)$ and $P(B \mid \bar{A})$ where A denotes the event that Mary goes on Friday while B the event that she goes on Sunday. Teachers can lead students to draw the tree diagram which will definitely help students to exhaust all the possible cases and to solve the problem.

Detailed Content	Time Ratio	Notes on Teaching
		In this example, a tree diagram can be used to show the relationship between $P_{n-1}, 1-P_{n-1}, P_{n}$ and $1-P_{n}$ where P_{n} denotes the probability that she buys X the on
Most of the students should be able to express P_{n} in terms of P_{1} and n. Students may		
be interested to know that the ultimate share of market of brand X is actually $\lim _{n \rightarrow \infty} P_{n}$.		
Example 2		

