UNIT 20: Random Variables. Discrete and Continuous Probability Distributions

Specific Objectives:

1. To be able to find the expectations and variances of discrete and continuous probability distributions.
2. To learn Binomial and Normal distribution and their daily life applications.
3. To recognize the property of linear combination of independent normal variables.

Detailed Content	Time Ratio	Notes on Teaching
(b) Probability density functions		$\sum f(x)=\sum_{x=1}^{\infty} P(X=x)=\frac{\frac{1}{6}}{1-\frac{5}{6}}=1$ Representing the discrete probability function graphically (in the form of bar chart or histogram as shown below) certainly helps students to visualize the concept. At this stage, students should have a clear picture of the discrete probability function. We can extend this idea to continuous random variable and introduce the continuous probability density function (p.d.f.) $f(x)$. Students should note that $f(x) \geq 0 \text { and } \int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$ Students are expected to know that a continuous random variable X can take any value within a specified range and it is related to p.d.f. $f(x)$ by $P(a \leq x<b)=\int_{a}^{b} f(x) \mathrm{d} x$

Detailed Content	Time Ratio	Notes on Teaching
$\stackrel{\rightharpoonup}{\text { en }}$		In fact, graphs of p.d.f. can be interpreted as frequency curves of continuous data in statistics. Also students should note that $P(X=a)=0 \text { and } P(a \leq X<b)=P(a<X<b)=P(a<X \leq b)=P(a \leq X \leq b)$ The following are some examples. Example 1 (rectangular distribution) The p.d.f. of X is defined as $f(x)= \begin{cases}k & \text { for } 0<x \leq 4 \quad k \text { is a constant } \\ 0 & \text { otherwise }\end{cases}$ k can be determined from $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1$. Also $P(-2<X \leq 1)=\int_{0}^{1} f(x) \mathrm{d} x$ and $P(X \geq 3)=1-\int_{0}^{3} f(x) \mathrm{d} x=\int_{3}^{4} f(x) \mathrm{d} x$ Students may be asked to find M in terms of b if $\mathrm{P}(X \leq M)=b$. They should note that when $b=0.5, M$ is the median. Example 2 The scheduled time of arrival of a flight to a certain city is 8:00 a.m. However, the actual time of arrival is $(8+X)$ am, where X is a random variable having the following p.d.f.: $f(x)= \begin{cases}\frac{3\left(4-x^{2}\right)}{32} & \text { for }-2<x<2 \\ 0 & \text { elsewhere }\end{cases}$ Possible questions include finding the probability that a flight will be between 7:00 a.m. and 8:00 a.m. and between 9:00 a.m. and 10:00 a.m. It is worthwhile to spare some time to discuss with students the meaning of the term cumulative distribution function $\phi(t)$.

Detailed Content	Time Ratio	Notes on Teaching
		$\begin{array}{rlr} \phi(t) & =\sum_{x \leq t} f(x) & \text { in discrete case } \\ \text { and } \phi(t) & =\int_{-\infty}^{t} f(x) \mathrm{d} x & \text { in continuous case } \end{array}$ Examples such as the two shown below may be used to illustrate these two cases. 1. Discrete In a throw of 2 dice, the probability of getting a sum greater than 10 is $1-\phi(10)$. ($\phi(10)$ is the probability that the sum is equal to or smaller than 10.) 2. Continuous If $\phi(a)$ denotes the probability that the life time of an electric bulb is smaller than a, then $P(X<a)=\phi(a), P(a<X<b)=\phi(b)-\phi(a)$ and $P(X>a)=1-\phi(a)$.

A brief revision on the meaning and physical significance of mean and standard deviation will facilitate students' learning the concepts of expectation. The meaning of expectation can be introduced through simple example such as that shown below.

Example

A man has a probability $p=0.01$ of winning a prize $x=\$ 200$. We say that his chance is worth $p x=(\$ 200) \cdot(0.01)=\$ 2$. Then the teacher can extend this idea to n discrete values of X.

Teachers should define the expectation of a discrete random variable $(E(X)=\Sigma p x)$ and that of a continuous random variable $\left(E(X)=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x\right)$.
Teachers may also discuss with students the definition of expectation of a function of X. The following shows the two definitions.

$$
\begin{array}{ll}
E[g(x)]=\sum p g(x) & \text { discrete random variable } \\
E[g(x)]=\int_{-\infty}^{\infty} f(x) g(x) \mathrm{d} x & \text { continuous random variable . }
\end{array}
$$

In the case of discrete random variables, students are expected to know the meanings of $E(X)(=\mu)$ and $E\left[(X-\mu)^{2}\right]\left(=\operatorname{Var}(X)=\sigma^{2}\right)$. In particular, teachers should indicate that μ is a measure of central tendency while σ^{2} is a measure of dispersion of X about μ.

Interesting examples can be discussed.

Detailed Content	Time Ratio	Notes on Teaching
$\stackrel{\rightharpoonup}{\infty}$		Example The probability of a candidate passing an examination at anyone attempt is 0.4 . If he fails, he carries on entering until he passes and each entry costs him \$120. Teachers may discuss with students the expected cost of his passing the examination. Calculations involving fair games, expected gain/loss are best illustrated by real-life examples. The following are two of them. Example 1 In an investment, a man can make a profit of $\$ 5000$ with a probability of 0.62 or a loss of $\$ 8000$ with a probability of 0.38 . $\begin{aligned} & E(X)=\mu \text { and } \operatorname{Var}(X)=\sigma^{2} \text { can be calculated from } \\ & \mu=\$(5000)(0.62)+\$(-8000)(0.38)=\$ 60 \\ & \sigma^{2}=(5000-60)^{2}(0.62)+(-8000-60)^{2}(0.38) \end{aligned}$ μ is called the expected gain. Example 2 A gambling machine has four windows and each of them displays one of the four different colours: red, orange, yellow and blue. Each of the colours is equally likely to be displayed and the colour displayed by the machine on one window is independent of the colour displayed on the other windows. A man pays $\$$ a for a game. He receives $\$ 5$ if all the colours displayed in the four windows are different. He receives $\$ 30$ if all the colours displayed are the same. In all other cases, he loses. $\$ X$ is the net amount he received in playing a game. In this example, teachers can discuss the following with students. 1. When $E(X)=0$, the game is a fair game. What is the fair price (i.e. $\$ a)$? 2. Suppose $a=1$, what are $E(X)$ and $\operatorname{Var}(X)$? Most of the students should realize that $E(X)<0$ in most of the gambling games. Teachers may also ask students to work out the new μ and σ^{2} when all the money is doubled and to find the relations between the new and old parameters. For abler students, teachers may ask them to guess the value of $E(Y)$ where $\$ Y$ is the net amount the man receives if he plays the games twice.

Detailed Content	Time Ratio	Notes on Teaching
$\stackrel{\rightharpoonup}{6}$		In the case of continuous random variables, examples showing the steps in calculating $E(X)$ and $\operatorname{Var}(X)$ should be provided. Example Orange juice is delivered to a fast food shop every morning. The daily demand for orange juice is a continuous random variable X distributed with a probability density function $f(x)$ of the form $f(x)= \begin{cases}a x(b-x) & \text { for } 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}$ The mean daily demand is 0.625 units. a and b can be calculated from the equation $\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1 \text { and } \int_{-\infty}^{\infty} x f(x) \mathrm{d} x=0.625$ The orange juice container at this fast food shop is filled to their total capacity of 0.8 units every morning. The probability P that in a given day, the fast food shop cannot meet the demand for orange juice is given by $P=1-\phi(0.8)=\int_{0.8}^{1} f(x) \mathrm{d} x$ For abler students, teachers may guide them to prove the two formulae $E[a g(X)+b]=a E[g(X)]+b$ and $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$ where a, b are constants. Also, it is not difficult for an average student to show that $E[g(X)+h(X)]=E[g(X)]+E[h(X)]$ and $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=E\left(X^{2}\right)-\mu^{2}$ The following example shows the use of the above formulae. Example Given $Z=2 X^{2}-3 X+5$ where X is a random variable with mean μ and variance σ^{2}. $E(Z)$ can be obtained from $\begin{aligned} E(Z) & =E\left(2 X^{2}-3 X+5\right)=E\left(2 X^{2}\right)-E(3 X)+E(5) \\ & =2\left(\mu^{2}+\sigma^{2}\right)-3 \mu+5 \end{aligned}$

Detailed Content	Time Ratio	Notes on Teaching
（c）Applications	Binomial probability distribution is useful in describing many real－life events．The following are three possible applications． Example 1 A student sits for a test which contains only 4 multiple choice questions．With his knowledge of the subject，he has a probability of 0.7 of knowing the correct answer of each question．There are 5 options in each question，thus the student has the probability 0.2 of getting the correct answer in each question through guessing．He has attempted all the questions． The probability that the student knows the correct answers of 3 questions is $C_{3}^{4}(0.7)^{3}(0.3)$.	

Since the student can get the correct answer of a question simply by guessing，P（correct answer for a question）$=p$ can be calculated from the two cases（a）he knows the question and（b）he guesses it correctly．
Suppose X is the number of correct answer（s）obtained，students may be asked to calculate $E(X)(=4 p), \operatorname{Var}(X)(=4 p(1-p))$ and $P(X=1) .\left(=C_{1}^{4} p^{1}(1-p)^{3}\right)$ The following questions can also be raised．

1． 2 marks will be awarded for a correct answer and 1 mark will be deducted for a wrong answer．Suppose Y is the total score obtained by the student，calculate $E(Y)$ and $\operatorname{Var}(Y)$ ．
2．Given that the student only knows the correct answers of 3 questions，what is the probability that the student obtains full marks？

3．Given that the student only gets one correct answer，what is the probability that he gets it through guessing？

Example 2
5% of light bulbs are defective．A large batch of light bulbs is tested according to the following rules．
（a）A sample of 10 light bulbs is tested．

Detailed Content	Time Ratio	
$\overrightarrow{\text { P }}$		
(c) Applications		

Detailed Content	Time Ratio	Notes on Teaching
	Example 1 A manufacturer uses a machine to produce resistors. He found that 10% of the resistors are less than 95Ω and 20% of the resistors are above 110Ω. The distribution of the resistances X is normal. μ and σ can be calculated from the two equations	
$\quad P(X<95)=P\left(Z<\frac{95-\mu}{\sigma}\right)=0.1$		
$\quad P(X>110)=P\left(Z>\frac{110-\mu}{\sigma}\right)=0.2$		

Example 2

Suppose X, the length of a rod, is a normally distributed random variable with mean μ and variance 1. If X does not meet certain specifications, then the manufacturer will suffer a loss. Specifically, the profit M (per rod) is the following function of X.

$$
M=\left\{\begin{aligned}
3 & \text { if } 8 \leq X \leq 10 \\
-1 & \text { if } X<8 \\
-5 & \text { if } X>10
\end{aligned}\right.
$$

The expected profit, $E(M)$, is given by $E(M)=8 \phi(10-\mu)-4 \phi(8-\mu)-5$ where $\phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}} \mathrm{~d} t$ is the cumulative probability function.

Suppose that the manufacturing process can be adjusted so that different values of μ may be achieved. The value of μ corresponding to maximum profit can be determined by differentiating $E(M)$ with respect to μ.

Example 3

A factory produces soft drinks contained in bottles. The normal volume contained in a bottle is 1.25 litres. However, due to random fluctations in the automatic bottling machine, the actual volume per bottle varies according to a normal distribution. It is observed that 15% of the bottles contain less than 1.25 litres whereas 10% contain more than 1.30 litres.

	Detailed Content	Time Ratio	Notes on Teaching
20.5	(d) Binomial approximated to normal distribution Linear Combination of Independent Normal Variables	6	Students should have no difficulty in finding the mean μ and standard deviation σ of the volume distribution. The cost in cents of producing a bottle containing x litres of soft drinks is $C=36+62 x+5 x^{2}$ where x is the random variable having the above distribution. The expected cost of a bottle $=E(C)$ where $E(C)=36+62 \mu+5\left(\mu^{2}+\sigma^{2}\right)$. The expected cost of 20000 bottles is $20000 E(C)$. Students should be made clear that the binomial probability can be calculated by using normal approximation only when n is large. In this case, the mean and variance can be taken as $n p$ and $n p q$ respectively. Students should also be reminded that 'end continuity corrections' is required in this approximation. Example A coin is tossed 400 times. If X represents the number of heads obtained, then X is $B(400,0.5)$. When it approximates to $N(200,100)$, $P(195 \leq X \leq 210)=P\left(\frac{194.5-200}{10}<Z<\frac{210.5-200}{10}\right)$ Students may be interested to know that $P(195 \leq X \leq 210) \neq P(195<X<210)$. Students should recognize that the sum of scalar multiples of independent normal variables is also normal. From this, it is not hard to see that: If X and Y are two independent normal variables such that $X \sim N\left(\mu_{1}, \sigma_{1}{ }^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}{ }^{2}\right)$, then $a X+b Y \sim N\left(a \mu_{1}+b \mu_{2}, a^{2} \sigma_{1}{ }^{2}+b^{2} \sigma_{2}{ }^{2}\right)$ for any real values a and b. The above result can be extended easily to n independent normal variables. Teachers should also quote examples to illustrate the usefulness of the above fact in daily-life application.

