Specific Objectives:

1. To estimate a population mean from a random sample.
2. To recognize the confidence interval for the mean of a normal population with known variance.
3. To recognize hypothesis testing and Type I and Type II errors.

are estimators of μ.

Detailed Content	Time Ratio	Notes on Teaching
		Students can easily reach the results that T_{1} and T_{2} are unbiased estimates of μ,

Example 2

Two random sample of sizes n and $3 n$ are taken from normal populations with mean μ and 3μ and variances σ^{2} and $3 \sigma^{2}$ respectively. If \bar{X}_{1} and \bar{X}_{2} are the sample means, show that the estimator $a \bar{X}_{1}+b \bar{X}_{2}$ is an unbiased estimator for μ if $a+3 b=1$.

Students are expected to know that the sample mean \bar{x} is the most efficient estimator for the population mean, but a proof is not necessary.

Example 3

The following shows a random sample of size 7 .
9.30, 9.61, 8.27, 8.90, 9.14, 9.90, 9.10

The most efficient estimate of the population mean is then given by

$$
\frac{\sum x}{n}=\frac{9.30+9.61+\ldots+9.10}{7}=9.17 \text { approximately }
$$

Example 4
Let p be the probability of obtaining a ' 6 ' when a loaded die is rolled. John carried out an experiment to find p by rolling the die 100 times and recorded 20 ' 6 's. Mary repeated the same experiment 200 times independently and recorded 50 ' 6 's. Students are expected to evaluate John's and Mary's estimate for p respectively by using the formula

$$
E\left(P_{s}\right)=p
$$

For abler students, teacher may guide them to improve the estimation by pooling the two estimates. (The pooled estimator for p is given by the formula $\hat{p}=\frac{n_{1} P_{s_{1}}+n_{2} P_{s_{2}}}{n_{1}+n_{2}}$)

	Detailed Content	Time Ratio	Notes on Teaching
21.3	Confidence Interval for the Mean of a Normal Population with Known Variance	6	In general, teachers should point out that an interval estimate of an unknown population parameter (e.g. the mean μ) is a random interval constructed so that it has a given probability of including the parameter. Students should also be told that the most commonly used confidence intervals are the 95% confidence interval and the 99% confidence interval. Teachers should indicate to students how the confidence interval can be used to estimate the mean of a normal population whose variance σ^{2} is known. Students should realize that if the sample size is n, the sample mean \bar{X} is normally distributed with mean μ and variance $\frac{\sigma^{2}}{n}$. Standardizing, $Z=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ where $Z \sim N(0,1)$.

Students should know that the central 95% of $N(0,1)$ lies between ± 1.96. Thus,

$$
P\left(-1.96 \leq \frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \leq 1.96\right)=0.95
$$

or

$$
P\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)=0.95
$$

Thus, if \bar{x} is a value of \bar{X}, then $\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)$ is a 95% confidence interval of μ.

Example 1

The masses of a random sample of 12 articles in grams are 200, 204, 196, 198, 210, $189,197,221,205,203,196,199$. If this sample came from a normal population with standard deviation 10 g , students should have no difficulty to obtain a 95% confidence interval for the mean mass of the population.

It is obvious for students to notice that

$$
P\left(\text { Type I error) }=. P \text { (rejecting } H_{0} \mid H_{0}\right. \text { is true) }
$$

and $\quad \mathrm{P}($ Type II error $)=\mathrm{P}\left(\right.$ accepting $\mathrm{H}_{0} I \mathrm{H}_{0}$ is false $)$
The following are some typical examples.
Example 1
A box is known to contain either $\left(\mathrm{H}_{0}\right) 10$ white balls and 90 black balls or $\left(\mathrm{H}_{1}\right) 50$ white balls and 50 black balls. In order to test hypothesis H_{0} against hypothesis H_{1}, four counters are drawn at random from the box without replacement. If all four counters are black, H_{0} is accepted. Otherwise, it will be rejected.

Detailed Content	Time Ratio	Notes on Teaching
\vec{G}		In this example, students should be able to find the probability of the Type I and Type 11 errors for this test by using the above relations. Example 2 The ingredients for concrete are mixed together to obtain a mean breaking strength of 2 000 newtons. If the mean breaking strength drops below 1800 newtons, then the composition must be changed. The distribution of the breaking strength is normal with standard deviation 200 newtons. Samples are taken in order to investigate the hypothesis: $\mathrm{H}_{0}: \mu=2000$ newtons $H_{1}: \mu=1800$ newtons How many samples must be tested so that $P($ Type I error $)=0.05$ and $\mathrm{P}($ Type II error $)=0.1$? Example 3 The calibration of a scale is to be checked by weighing a 10 kg test specimen 25 times. Suppose the results $6 f$ different weightings are independent of one another and that the weight on each trial is normally distributed with $\sigma=0.200 \mathrm{~kg}$. Let μ denote the true weight reading on the scale. (a) What hypothesis should be tested? (b) Suppose the scale is to be recalibrated if either $\bar{x} \geq 10.1032$ or $\bar{x} \leq 9.8968$. What is the probability that recalibration is carried out when it is actually unnecessary? Which type of error would that be? (c) What is the probability that recalibration is judged unnecessary when in fact $\mu=$ 10.1? When $\mu=9.8$? Which type of error are these?
	27	

