UNIT 12: More About Probability

Specific Objectives:

- 1. To learn and apply the law $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 2. To define conditional probability and independent events.
- 3. To learn and apply the law $P(A \cap B) = P(A)P(B|A)$.
- 4. To learn and apply the Bayes' theorem for simple cases.

	Detailed Content	Time Ratio	Notes on Teaching
12.1	The addition rule	4	Teachers should guide the students to discover the following rule through examples $P(A = D) = P(A) = P(A) = P(A = D)$
			$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Furthermore if A and B are mutually exclusive, then $P(A \cup B) = P(A) + P(B)$
හු 12.2	Conditional probabilities	6	Students should be able to apply the above to solve problems. Various examples should be used to illustrate the meaning of conditional probabilities before introducing the definition that
			$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$
			where A can be referred as the reduced sample space. From the above definition, we can easily derive the rule: $P(A \cap B) = P(A)P(B \mid A)$
			Teachers should emphasize that this rule has been applied to solve problems in the Certificate level. Furthermore, <i>A</i> and <i>B</i> are said to be independent when $P(B A) = P(B)$
			Hence, when A and B are independent, $P(A \cap B) = P(A)P(B)$

	Detailed Content	Time Ratio	Notes on Teaching
12.3	Bayes' Theorem	6	Bayes' theorem states that If B_1, B_2, \ldots are mutually exclusive and exhaustive events, then
			$P(B_r \mid A) = \frac{P(A \cap B_r)}{\sum_i P(A \cap B_i)} = \frac{P(A \mid B_r)P(B_r)}{\sum_i P(A \mid B_i)P(B_i)}$ Students are advised not to memorize the above formula but to calculate the conditional
		16	probability from definition with the aid of a tree diagram. Teachers should guide the students to do that before deriving the Bayes' theorem.