UNIT 14: The normal distribution and its applications

Specific Objectives:

1. To learn the normal curve and standard normal curve
2. To understand the use of normal table.
3. To solve practical problems.

	Detailed Content	Time Ratio	Notes on Teaching
14.1	Normal distribution	3	Preliminary Idea of continuous probability distribution may be provided to broaden students' horizon. The probability function of normal distribution with mean μ and standard deviation σ given by $f(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \text { for }-\infty<x<\infty$
			The notation $N\left(\mu, \sigma^{2}\right)$ should be mentioned. For abler students the relation between binomial and normal distribution could be discussed. The standard normal distribution which is a particular case wlth $\mu=0$ and $\sigma=1$ should be discussed. The structure of its probability function could be revealed with the sub-unit 14.2 as continuation $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$
14.2	Normal curve and standard normal curve	3	Important properties of the normal curve such as (a) the curve is bell-shaped and symmetrical about the mean; (b) the mean, mode and median are all equal; (c) the flatness of the curve is determined by the value of σ; (d) the area under the curve is 1 are to be discussed in detail with the students. Transformation of normal distribution $N\left(\mu, \sigma^{2}\right)$ into standard normal distribution by using the formula $Z=\frac{X-\mu}{\sigma}$ (i.e. Z is in $N(0,1)$ when x is in $N\left(\mu, \sigma^{2}\right)$) should be made clear to students.

Detailed Content

