UNIT 2:

Specific Objectives:

1. To learn the binomial expansion of $(1+x)^{n}$ when n is a positive integer.
2. To study the expansion as an infinite series when n is not a positive integer and $|x|<1$

	Detailed Content	Time Ratio	Notes on Teaching
2.1 The expansion	3	The formal proof of the expansion is not required. Determination of the greatest term and relations between coefficients are excluded. However, the properties of the binomial expansion should include (a) the expansion contains $n+1$ terms;	
	$(1+x)^{n}=\sum_{r=0}^{n} C_{r}^{n} x^{r}$, when n		

is a positive integer.

$\stackrel{\rightharpoonup}{\omega}$
2.2 The expansion of $(1+x)^{n}$ 5 when n is not a positive integer and $|x|<1$.
(a) the expansion contains $n+1$ terms;
(b) the binomial coefficients C_{r}^{n} are all integers.

The Pascal triangle should be studied in relation to the coefficients in the expansion. Students are expected to know

$$
\begin{aligned}
& \sum_{r=1}^{n}\left(a x_{r} \pm b y_{r}\right)=a \sum_{r=1}^{n} x_{r} \pm b \sum_{r=1}^{n} y_{r} \\
& \sum_{r=1}^{n}\left(x_{r}+y_{r}\right)^{2}=\sum_{r=1}^{n} x_{r}^{2}+2 \sum_{r=1}^{n} x_{r} y_{r}+\sum_{r=1}^{n} y_{r}^{2}
\end{aligned}
$$

Students should learn what happens to the coefficient $\frac{n(n-1) \cdots(n-r+1)}{r!}$ of the general term i.e. the $(r+1)$ st term of the expansion; when n is a positive integer, it vanishes when $r=n+1$. If n is not a positive integer, it will never vanish in the latter case, the expansion is given in the form

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\cdots+\frac{n(n-1) \cdots(n-r+1)}{r!} x^{r}+\cdots
$$

To convince students that the infinite series converges only when $-1<x<1$ or $|x|$ <1, the following example may be given:
Consider the expansion $(1-x)^{-1}=1+x+x^{2}+\cdots+x^{r}+\cdots$

Detailed Content	Time Ratio	Notes on Teaching
$\stackrel{\rightharpoonup}{\Delta}$	8	Putting $x=-1$ we have expansion $1-1+1-1+1-1+\ldots$ For odd number of terms, the sum $=1$ and for even number of terms, the sum $=0$ and is never equal to L.H.S. which is equal to $\frac{1}{2}$. The meaning of absolute value should also be taught, however informal discussion on the intuitive meaning of convergence and divergence is expected. Expansions for particular values of n should be studied, such as (a) $\quad(1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+\cdots$ (b) $\quad(1-x)^{\frac{1}{2}}=1+\frac{x}{2}+\frac{1 \cdot 3}{2!}\left(\frac{x}{2}\right)^{2}+\frac{1 \cdot 3 \cdot 5}{3!}\left(\frac{x}{2}\right)^{3}+\cdots$ (c) $\quad(1+x)^{-\frac{1}{3}}=1-\frac{x}{3}+\frac{1 \cdot 4}{2!}\left(\frac{x}{3}\right)^{2}+\frac{1 \cdot 4 \cdot 7}{3!}\left(\frac{x}{3}\right)^{3}+\cdots$ Students should be able to obtain expansion like $\frac{(1+x)^{\frac{1}{3}}}{(1-x)^{2}}$ in ascending powers of x to a specified number of terms.

