UNIT 4: The Logarithmic Function

Specific Objectives:

18

- 1. To Study the properties and graphs of the logarithmic functions to any base.
- 2. To solve simple equations involving logarithms.
- 3. To apply the reduction of the relation $y = kx^n$ to a linear relation.

Detailed Content	Time Ratio	Notes on Teaching
4.2 Solution of simple equations involving logarithms 4.3 Reduction of the relation $y = kx^n$ to a linear relation.	2	Properties of logarithms (a) $\log_a(xy) = \log_a x + \log_a y$ (b) $\log_a(\frac{x}{y}) = \log_a x - \log_a y$ (c) $\log_a x^n = n \log_a x$ The proofs of the above could be provided however students are not expected to know the change of base. Natural logarithm should be discussed and Its importance mentioned. Checking of roots in this sub-unit is essential. Examples: (a) Solve $\log_{10}(x-2) + \log_{10}(x+1) = 1$ (x-2)(x+1) = 10 x = 4 or -3 But $x = -3$ is rejected as $\log_{10}(x-2)$ or $\log_{10}(x+1)$ is undefined when $x = -3$. Equations of this kind should be mentioned. (b) Solve $3 \cdot 2^x = 5^{x-1}$ by taking logarithms. By taking logarithms on both sides of $y = kx^n$, students should obtain the relation Y = nX + c where $X = \log_{10} x$, $Y = \log_{10} y$ and $c = \log_{10} k$ The equation $Y = nX + c$ represents a straight line on the X-Y coordinate system with slope n and Y-intercept c . Usually, the values of x and y are found experimentally. Thus, if pairs (x, y) of values of x and y are given, students can plot the graph of $\log_{10} y$ against $\log_{10} x$
4.3 Reduction of the relation $y = kx^n$ to a linear relation.	1	(b) Solve $3 \cdot 2^x = 5^{x-1}$ by taking logarithms. By taking logarithms on both sides of $y = kx^n$, students should obtain the relation Y = nX + c where $X = \log_{10} x$, $Y = \log_{10} y$ and $c = \log_{10} k$ The equation $Y = nX + c$ represents a straight line on the X-Y coordinate system with slope <i>n</i> and Y-intercept <i>c</i> . Usually, the values of <i>x</i> and <i>y</i> are found experimentally. Thus, if pairs (<i>x</i> , <i>y</i>) values of <i>x</i> and <i>y</i> are given, students can plot the graph of $\log_{10} y$ against $\log_1 f$ from which they can read off the slope and Y-intercept to determine the values of <i>n</i> a <i>k</i> .