UNIT 6: Differentiation

Specific Objectives:

21

1. To acquire general techniques of differentiation

		Detailed Content	Time Ratio	Notes on Teaching
	6.1	Basic differentiation rules	4	The following rules should be taught. Their proofs may be provided for
				completeness.
				(a) $\frac{d}{dx}k = 0$, k is constant
				(b) $\frac{d}{dx}x^n = nx^{n-1};$
				(c) $\frac{d}{dx}kf(x) = k\frac{d}{dx}f(x);$
20				(d) $\frac{d}{dx}[f(x)\pm g(x)] = \frac{d}{dx}f(x)\pm \frac{d}{dx}g(x)$
				(e) $\frac{d}{dx}f(x)g(x) = g(x)\cdot\frac{d}{dx}f(x) + f(x)\cdot\frac{d}{dx}g(x)$
				(f) $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}f(x) - f(x) \cdot \frac{\mathrm{d}}{\mathrm{d}x}g(x)}{g^2(x)}, g(x) \neq 0$
	6.2	Differentiation of	4	Chain rule should be introduced in order to find the derivatives of composite
		inverse functions and		derivatives of composite functions. Rigorous proofs on
				$\frac{dy}{dt} = \frac{dy}{dt} \cdot \frac{du}{dt}$ and $\frac{dy}{dt} = \frac{1}{dt}$
				$dx du dx \frac{dx}{dx}$
				ay
				expected.
				Differentiation of simple implicit function is included while differentiation of parametric equations is not required.

	Detailed Content	Time Ratio	Notes on Teaching
6.3	Differentiation of <i>e^x</i> and In <i>x</i>	5	$\frac{d e^x}{dx} = e^x$ may be proved by assuming that it is legitimate to differentiate the
			infinite series
			$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \cdots + \frac{x^{n}}{n!} + \cdots$
			term by term.
			The derivative of ln x may be treated as the derivative of the inverse function of
			e [°] .
			when y is a complicated function of x and especially when it involves a variable
			as index, the value of $\frac{dy}{dx}$ may sometimes be more easily found by logarithmic
			differentiation. The following rules should be taught:
			(a) $\frac{d}{dx}(\ln x) = \frac{1}{x}$
			(b) $\frac{d}{dx}(a^x) = a^x \ln a$
			(c) $\frac{d}{dx}\log_a x = \frac{\ln a}{x}$
			Differentiation of functions like x^x , e^{x^2} and $\log_a \sqrt{x+1}$ is expected.
6.4	Second derivative	2	The symbol $f''(x)$ and should $\frac{d^2y}{dx^2}$ be introduced to students. The other higher order
			derivatives may be omitted.
		15	