UNIT 8: Indefinite Integration

Specific Objectives:

- 1. To perform indefinite integration as the reverse process of differentiation.
- 2. To learn standard formulae for indefinite integration.
- 3. To find indefinite integrals using substitution.

		Detailed Content	Time Ratio	Notes on Teaching
	8.1	Indefinite integration	2	The idea of primitive function is helpful and the relation $\int f(x) dx = F(x) + C$ should
24	8.2	Some formulae for indefinite integration	3	be stressed while the meaning of <i>C</i> be explained. Treating indefinite integration as the reverse process of differentiation, students should be able to find the following standard integrals:
				$\int x^n dx$, when $n \neq -1$
				$\int e^x dx$
				It should be noted that $\int \frac{1}{x} dx = \ln x + c$
				Theorems on the following integrals should be taught:
				$\int kf(x)\mathrm{d}x = k\int f(x)\mathrm{d}x$
				$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
	8.3	Integration by substitution	4	The following integrals may be used as examples in introducing the topic:
				$\int (2x+1)^5 dx$ and $\int 2x\sqrt{x^2+1} dx$.
				Different methods of evaluating the same integral may lead to different results, but these can only differ by a constant.
				e.g. $\int (x+1) dx = \frac{(x+1)^2}{2} + C_1$
				$\int (x+1) \mathrm{d}x = \frac{x^2}{2} + x + C_2$
				It should be noted that integration by parts is not required.
			9	