Chapter 5 Exemplars

Exemplar $1 \quad$ A. M. \geq G. M.
Exemplar $2 \quad$ Plane Area
Exemplar 3 The Binomial Theorem

Exemplar 1:

A. M. \geq G. M.

Objective: To prove A. M. \geq G. M. without the application of Backward Induction
Pre-requisite knowledge: (1) The Principle of Mathematical Induction
(2) Fundamental techniques in proving absolute inequalities

Description of the Activity:

Let $A_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}$ and $G_{n}=\left(a_{1} a_{2} \cdots a_{n}\right)^{\frac{1}{n}}$, where $a_{1}, a_{2}, \ldots, a_{n}$ are n positive numbers. It was suggested in the Syllabuses for Secondary Schools - Pure Mathematics (Advanced Level) 1992 that teachers may prove $A_{n} \geq G_{n}$ by backward induction if required. However, backward induction is deleted from this Curriculum. Some suggestions to prove the inequality are as follows:

Method 1

It is obvious that $A_{1}=G_{1}$ and $A_{2} \geq G_{2}$.
Assume that $A_{k} \geq G_{k}$ is true, where k is a positive integer greater than or equal to 2 .
When $n=k+1$,
Case (i) If $a_{1}=a_{2}=\cdots=a_{k+1}$, then $A_{k+1}=G_{k+1}$.
Case (ii) If not all $a_{1}, a_{2}, \ldots, a_{k+1}$ are equal, we may assume, without loss of generality, that $a_{1} \leq a_{2} \leq \cdots \leq a_{k+1}$ and $a_{1}<a_{k+1}$.
It follows that $\frac{a_{1}}{G_{k+1}}<1, \frac{a_{k+1}}{G_{k+1}}>1$.
Let $y=a_{1} a_{k+1}$. Since $A_{k} \geq G_{k}$, we have

$$
\frac{y}{\left(G_{k+1}\right)^{2}}+\frac{a_{2}}{G_{k+1}}+\cdots+\frac{a_{k}}{G_{k+1}} \geq k \sqrt[k]{\frac{y}{\left(G_{k+1}\right)^{2}} \cdot \frac{a_{2}}{G_{k+1}} \cdots \cdots \frac{a_{k}}{G_{k+1}}}=k \sqrt[k]{\frac{a_{1} a_{k+1} a_{2} \ldots a_{k}}{\left(G_{k+1}\right)^{k+1}}}=k
$$

Adding $\frac{a_{1}}{G_{k+1}}+\frac{a_{k+1}}{G_{k+1}}-\frac{y}{\left(G_{k+1}\right)^{2}}$ to both sides of the inequality, we have

$$
\begin{aligned}
\frac{a_{1}}{G_{k+1}}+\frac{a_{2}}{G_{k+1}}+\cdots+\frac{a_{k}}{G_{k+1}}+\frac{a_{k+1}}{G_{k+1}} & \geq k+\frac{a_{1}}{G_{k+1}}+\frac{a_{k+1}}{G_{k+1}}-\frac{y}{\left(G_{k+1}\right)^{2}} \\
& =k+1+\frac{a_{1}}{G_{k+1}}-1+\frac{a_{k+1}}{G_{k+1}}-\frac{a_{1} a_{k+1}}{G_{k+1}} \cdot \frac{1}{G_{k+1}}
\end{aligned}
$$

$$
=k+1+\left(1-\frac{a_{1}}{G_{k+1}}\right)\left(\frac{a_{k+1}}{G_{k+1}}-1\right)
$$

$\because \frac{a_{1}}{G_{k+1}}<1, \frac{a_{k+1}}{G_{k+1}}>1, \quad \therefore\left(1-\frac{a_{1}}{G_{k+1}}\right)\left(\frac{a_{k+1}}{G_{k+1}}-1\right)>0$.

Thus, we have $\frac{a_{1}}{G_{k+1}}+\frac{a_{2}}{G_{k+1}}+\cdots+\frac{a_{k}}{G_{k+1}}+\frac{a_{k+1}}{G_{k+1}}>k+1$.
$\therefore A_{k+1}>G_{k+1}$ holds.
From cases (i) and (ii), we have $A_{k+1} \geq G_{k+1}$
By the principle of mathematical induction, $A_{n} \geq G_{n}$ is true for all natural numbers n.

Method 2

It is obvious that $A_{1}=G_{1}$ and $A_{2} \geq G_{2}$.
Assume that $A_{k} \geq G_{k}$ is true, where k is a positive integer greater than or equal to 2 .
Let the geometric mean and the arithmetic mean of $\underbrace{A_{k+1}, A_{k+1}, \ldots, A_{k+1}}_{(k-1) \text { terms }}$ and a_{k+1} be M and L respectively. Then $M=\left(a_{k+1} A_{k+1}{ }^{k-1}\right)^{\frac{1}{k}}$ and $L=\frac{1}{k}\left[a_{k+1}+(k-1) A_{k+1}\right]$.
By the induction hypothesis, $M \leq L$ and

$$
\begin{aligned}
\left(G_{k+1}^{k+1} A_{k+1}^{k-1}\right)^{\frac{1}{2 k}}=\left(a_{1} a_{2} \cdots a_{k} a_{k+1} A_{k+1}^{k-1}\right)^{\frac{1}{2 k}} & =\left[\left(a_{1} a_{2} \cdots a_{k}\right)^{\frac{1}{k}}\left(a_{k+1} A_{k+1}^{k-1}\right)^{\frac{1}{k}}\right]^{\frac{1}{2}} \\
& =\left(G_{k} M\right)^{\frac{1}{2}} \\
& \leq \frac{1}{2}\left(G_{k}+M\right) \\
& \leq \frac{1}{2}\left(A_{k}+L\right) \quad \text { since } G_{k} \leq A_{k} \text { and } M \leq L \\
& =\frac{1}{2}\left\{A_{k}+\frac{1}{k}\left[a_{k+1}+(k-1) A_{k+1}\right]\right\} \\
& =\frac{1}{2 k}\left\{a_{k+1}+k A_{k}+(k-1) A_{k+1}\right\} \\
& =\frac{1}{2 k}\left\{(k+1) A_{k+1}+(k-1) A_{k+1}\right\} \\
& =A_{k+1}
\end{aligned}
$$

i.e. $\left(G_{k+1}\right)^{k+1}\left(A_{k+1}\right)^{k-1} \leq\left(A_{k+1}\right)^{2 k}$
$\therefore G_{k+1} \leq A_{k+1}$ holds.
By the principle of mathematical induction, $A_{n} \geq G_{n}$ is true for all natural numbers n.

Method 3

It is obvious that $A_{1}=G_{1}$ and $A_{2} \geq G_{2}$.
Assume that $A_{k} \geq G_{k}$ is true, where k is a positive integer greater than or equal to 2 .
When $n=k+1$,
Case (i) If $a_{1}=a_{2}=\cdots=a_{k+1}$, then $A_{k+1}=G_{k+1}$.
Case (ii) If not all $a_{1}, a_{2}, \ldots, a_{k+1}$ are equal, we may assume, without loss of generality, that $a_{1} \leq a_{2} \leq \cdots \leq a_{k+1}$ and $a_{1}<a_{k+1}$.
Since $A_{k} \geq G_{k}$, we have

$$
a_{1}+a_{2}+\cdots+a_{k}+a_{k+1} \geq k \sqrt[k]{a_{1} a_{2} \cdots a_{k}}+a_{k+1}
$$

$$
\begin{aligned}
& =\left(k \sqrt[k]{\frac{a_{1} a_{2} \cdots a_{k+1}}{\left(a_{k+1}\right)^{k+1}}}+1\right) a_{k+1} \\
& =\left(k r^{k+1}+1\right) a_{k+1}
\end{aligned}
$$

$$
\text { where } \quad r^{k(k+1)}=\frac{a_{1} a_{2} \ldots a_{k+1}}{\left(a_{k+1}\right)^{k+1}} \text { and } r^{k(k+1)}<1 \text { with } r>0
$$

Since $0<r^{k(k+1)}<1$, then $0<r<1$ and $r^{k}<r^{k-1}<r^{k-2}<\ldots \ldots .<r^{3}<r^{2}<r$.

$$
\begin{aligned}
& \text { As } \frac{1-r^{k+1}}{1-r}=1+r+\ldots+r^{k}>\underbrace{r^{k}+r^{k}+\ldots+r^{k}}_{(k+1) \text { terms }}=(k+1) r^{k}, \\
& \therefore 1-r^{k+1}>(k+1) r^{k}(1-r) .
\end{aligned}
$$

Hence, we have $1-r^{k+1}+(k+1) r^{k+1}>(k+1) r^{k}$.
$\therefore k r^{k+1}+1>(k+1) r^{k}$
Since $a_{1}+a_{2}+\cdots+a_{k}+a_{k+1} \geq\left(k r^{k+1}+1\right) a_{k+1}$
$\therefore a_{1}+a_{2}+\cdots+a_{k}+a_{k+1}>(k+1) r^{k} a_{k+1}$

$$
\begin{aligned}
& =(k+1) \sqrt[k+1]{\sqrt{\frac{a_{1} a_{2} \cdots a_{k+1}}{\left(a_{k+1}\right)^{k+1}}} a_{k+1}} \\
& =(k+1) \sqrt[k+1]{a_{1} a_{2} \cdots a_{k} a_{k+1}}
\end{aligned}
$$

$\therefore A_{k+1}>G_{k+1}$ holds.
From cases (i) and (ii), we have $A_{k+1} \geq G_{k+1}$.
By the principle of mathematical induction, $A_{n} \geq G_{n}$ is true for all natural numbers n.

Method 4

It is obvious that $A_{1}=G_{1}$ and $A_{2} \geq G_{2}$.
Assume that $A_{k} \geq G_{k}$ is true, where k is a positive integer greater than or equal to 2 .
When $n=k+1$,
Case (i) If $a_{1}=a_{2}=\cdots=a_{k+1}$, then $A_{k+1}=G_{k+1}$.
Case (ii) If not all $a_{1}, a_{2}, \ldots, a_{k+1}$ are equal, we may assume, without loss of generality, that $a_{1} \leq a_{2} \leq \cdots \leq a_{k+1}$ and $a_{1}<a_{k+1}$.

It follows that $a_{k+1}>\sqrt[k]{a_{1} a_{2} \cdots a_{k}}=G_{k}$, and so $a_{k+1}-G_{k}>0$.
By the induction hypothesis,

$$
\begin{aligned}
A_{k+1} & =\frac{1}{k+1}\left(a_{1}+a_{2}+\cdots+a_{k}+a_{k+1}\right) \\
& =\frac{k A_{k}+a_{k+1}}{k+1} \\
& \geq \frac{k G_{k}+a_{k+1}}{k+1} \\
& =G_{k}+\frac{a_{k+1}-G_{k}}{k+1}
\end{aligned}
$$

By the Binomial Theorem, we have

$$
\begin{aligned}
\left(A_{k+1}\right)^{k+1} & \geq\left(G_{k}+\frac{a_{k+1}-G_{k}}{k+1}\right)^{k+1} \\
& =\left(G_{k}\right)^{k+1}+(k+1)\left(G_{k}\right)^{k}\left(\frac{a_{k+1}-G_{k}}{k+1}\right)+\cdots \quad \text { (all terms are positive) } \\
& >\left(G_{k}\right)^{k+1}+\left(G_{k}\right)^{k}\left(a_{k+1}-G_{k}\right) \\
& =\left(G_{k}\right)^{k} a_{k+1} \\
& =\left(G_{k+1}\right)^{k+1}
\end{aligned}
$$

$$
\therefore A_{k+1}>G_{k+1} \text { holds. }
$$

From cases (i) and (ii), we have $A_{k+1} \geq G_{k+1}$.
By the principle of mathematical induction, $A_{n} \geq G_{n}$ is true for all natural numbers n.

Exemplar 2:

Plane Area

Objective: To prove that the area bounded by the curve with parametric equations $x=x(t)$, $y=y(t)$, and the lines OA, OB is $\frac{1}{2} \int_{t_{0}}^{t_{1}}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} t}-y \frac{\mathrm{~d} x}{\mathrm{~d} t}\right) \mathrm{d} t$
where the parameters of A and B are t_{0} and t_{1} respectively.

Pre-requisite knowledge: (1) The application of definite integrals to find the area under a curve in Cartesian form.
(2) The Fundamental Theorem of Integral Calculus.

Description of the Activity:

Many teachers used to prove the formula (*) by means of formulae related to the polar coordinate system. The formula $\left({ }^{*}\right)$ can be readily derived from $\frac{1}{2} \int_{\alpha}^{\beta} r^{2} \mathrm{~d} \theta$, which gives the area bounded by the curve with the polar equation $r=f(\theta)$ and the two radii with radius vectors $\theta=\alpha$ and $\theta=\beta$. The contents related to the polar coordinate system are deleted from this curriculum. A suggestion to prove the formula (*) is as follows:

A curve with the parametric equations $x=x(t), y=y(t)$ is shown in the diagram above. The parameters of A and B are t_{0} and t_{1} respectively. Without loss of generality, we may assume that, when the parameter t increases, the curve is continuous and goes in the anticlockwise direction.

Area of the shaded region $=$ Area of $\Delta \mathrm{BOC}+$ Area of ABCD - Area of $\triangle \mathrm{AOD}$

$$
\begin{aligned}
& =\frac{x\left(t_{1}\right) y\left(t_{1}\right)}{2}+\int_{t=t_{1}}^{t=t_{0}} y \mathrm{~d} x-\frac{x\left(t_{0}\right) y\left(t_{0}\right)}{2} \\
& =\frac{x\left(t_{1}\right) y\left(t_{1}\right)}{2}+\int_{t_{1}}^{t_{0}} y(t) x^{\prime}(t) \mathrm{d} t-\frac{x\left(t_{0}\right) y\left(t_{0}\right)}{2} \\
& =\frac{1}{2}\left[x\left(t_{1}\right) y\left(t_{1}\right)-x\left(t_{0}\right) y\left(t_{0}\right)\right]-\int_{t_{0}}^{t_{1}} y(t) x^{\prime}(t) \mathrm{d} t
\end{aligned}
$$

By the Second fundamental Theorem of Integral Calculus (p. 69 in Appendix 2),
we have $\quad x\left(t_{1}\right) y\left(t_{1}\right)-x\left(t_{0}\right) y\left(t_{0}\right)=\int_{t=t_{0}}^{t=t_{1}} \mathrm{~d}[x(t) y(t)]$.
Hence, we have
Area of the shaded region $\quad=\frac{1}{2} \int_{t=t_{0}}^{t=t_{1}} \mathrm{~d}[x(t) y(t)]-\int_{t_{0}}^{t_{1}} y(t) x^{\prime}(t) \mathrm{d} t$

$$
\begin{aligned}
& =\frac{1}{2} \int_{t_{0}}^{t_{1}}\left[x(t) y^{\prime}(t)+x^{\prime}(t) y(t)\right] \mathrm{d} t-\int_{t_{0}}^{t_{1}} y(t) x^{\prime}(t) \mathrm{d} t \\
& =\frac{1}{2} \int_{t_{0}}^{t_{1}}\left[x(t) y^{\prime}(t)-x^{\prime}(t) y(t)\right] \mathrm{d} t \\
& =\frac{1}{2} \int_{t_{0}}^{t_{1}}\left[x \frac{\mathrm{~d} y}{\mathrm{~d} t}-y \frac{\mathrm{~d} x}{\mathrm{~d} t}\right] \mathrm{d} t
\end{aligned}
$$

i.e. The area bounded by the curve with parametric equations $x=x(t), y=y(t)$ and the lines OA, OB is $\frac{1}{2} \int_{t_{0}}^{t_{1}}\left[x \frac{\mathrm{~d} y}{\mathrm{~d} t}-y \frac{\mathrm{~d} x}{\mathrm{~d} t}\right] \mathrm{d} t$.

Exemplar 3:

The Binomial Theorem

Objective: To prove the Binomial Theorem for positive integral indices.

Pre-requisite knowledge: The relations between the roots and coefficients of a polynomial equation with real coefficients.

Description of the Activity:

Most teachers apply the Principle of Mathematical Induction to prove the Binomial Theorem for positive integral indices. An alternative way to prove that, for positive integers n,

$$
(a+b)^{n}=C_{0}^{n} a^{n}+C_{1}^{n} a^{n-1} b+C_{2}^{n} a^{n-2} b^{2}+\ldots \ldots .+C_{r}^{n} a^{n-r} b^{r}+\ldots \ldots . .+C_{n-1}^{n} a b^{n-1}+C_{n}^{n} b^{n}
$$

is as follows:

Let $(x+b)^{n}=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{k} x^{k}+\ldots+a_{1} x+a_{0}$, where $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}$ are real constants.

Since the equation $(x+b)^{n}=0$ has n repeated roots $x=-b$,
the equation $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{k} x^{k}+\ldots+a_{1} x+a_{0}=0$ has n roots $x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ with $x_{1}=x_{2}=\ldots=x_{n-1}=x_{n}=-b$.

By using the relations between the roots and coefficients of a polynomial equation with real coefficients,

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+\ldots \ldots .+x_{n}=-\frac{a_{n-1}}{a_{n}}, \\
x_{1} x_{2}+x_{1} x_{3}+\ldots \ldots+x_{n-1} x_{n}=\frac{a_{n-2}}{a_{n}}, \\
x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+\ldots \ldots+x_{n-2} x_{n-1} x_{n}=-\frac{a_{n-3}}{a_{n}}, \\
\ldots \ldots \ldots \\
x_{1} x_{2} \ldots x_{k}+x_{1} x_{2} \ldots x_{k+1}+\ldots \ldots .+x_{n-k+1} x_{n-k+2} \ldots x_{n}=(-1)^{k} \frac{a_{n-k}}{a_{n}}, \\
\ldots \ldots \ldots \\
x_{1} x_{2} \ldots x_{n}=(-1)^{n} \frac{a_{0}}{a_{n}} .
\end{array}\right.
$$

In the $k^{\text {th }}$ equality above, the left-hand side is the sum of the product of k terms of x_{i}.
Since $x_{1}=x_{2}=\ldots=x_{n-1}=x_{n}=-b$,
$\therefore \quad(-b)^{k} C_{k}^{n}=(-1)^{k} \frac{a_{n-k}}{a_{n}}$.
As a_{n} is the coefficient of x_{n} in the expansion of $(x+b)^{n}$, it is obvious that $a_{n}=1$, $\therefore \quad a_{n-k}=C_{k}^{n} b^{k} \quad(k=1,2, \ldots \ldots, n)$.
i.e. $\quad a_{n}=1=C_{0}^{n}, a_{n-1}=C_{1}^{n} b, \ldots \ldots, a_{n-k}=C_{k}^{n} b^{k}, \ldots \ldots, a_{0}=C_{n}^{n} b^{n}$
$\therefore(x+b)^{n}=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{k} x^{k}+\ldots+a_{1} x+a_{0}$

$$
=C_{0}^{n} x^{n}+C_{1}^{n} b x^{n-1}+C_{2}^{n} b^{2} x^{n-2}+\ldots+C_{n-k}^{n} b^{n-k} x^{k}+\ldots+C_{n-1}^{n} b^{n-1} x+C_{n}^{n} b^{n} .
$$

Putting $x=a$, we have

$$
\begin{aligned}
(a+b)^{n} & =C_{0}^{n} a^{n}+C_{1}^{n} b a^{n-1}+C_{2}^{n} b^{2} a^{n-2}+\ldots+C_{n-k}^{n} b^{n-k} a^{k}+\ldots+C_{n-1}^{n} b^{n-1} a+C_{n}^{n} b^{n} \\
& =C_{0}^{n} a^{n}+C_{1}^{n} a^{n-1} b+C_{2}^{n} a^{n-2} b^{2}+\ldots+C_{n-k}^{n} a^{k} b^{n-k}+\ldots+C_{n-1}^{n} a b^{n-1}+C_{n}^{n} b^{n} .
\end{aligned}
$$

