Unit A3: Mathematical Induction
Objective: (1) To understand the Principle of Mathematical Induction.
(2) To apply the Principle of Mathematical Induction to prove propositions involving integers.
(3) To be able to modify the Principle of Mathematical Induction to suit different purposes.

Detailed Content	Time Ratio	Notes on Teaching
3.1 The Principle of Mathematical Induction and its applications	6	As an introduction, students may be asked to guess the formula for the sum of the first n odd positive integers by considering $\begin{array}{r} 1=1 \\ 1+3=4 \\ 1+3+5=9 \end{array}$

After the proposition $1+3+5+\ldots+(2 n-1)=n^{2}$ is established, students should be led to understand that they should not claim this result is true by considering only a finite number of cases. An illustration of the use of mathematical induction should then follow.

The Principle of Mathematical Induction should be formally written on the board. Teachers may find it easier to explain the Principle by referring to a game of dominoes:

Examples should be done on the applications to the summation of series, divisibility and proving inequalities. The Principle of Mathematical Induction may

Teachers should point out that a variation of the Principle is required for the proof of these examples. A few more examples on sequences defined by recurrence relations may be discussed.

