Unit A3: Mathematical Induction

- **Objective:** (1) To understand the Principle of Mathematical Induction.
 - (2) To apply the Principle of Mathematical Induction to prove propositions involving integers.
 - (3) To be able to modify the Principle of Mathematical Induction to suit different purposes.

Detailed Content	Time Ratio	Notes on Teaching
3.1 The Principle of Mathematical Induction and its applications	6	As an introduction, students may be asked to guess the formula for the sum of the first n odd positive integers by considering 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9

	Detailed Content	Time Ratio	Notes on Teaching
of th	Other common variations	-6 5	sometimes modified to suit different cases. Examples should also be used to illustrate that both conditions of the Principle must be satisfied to prove a proposition. Further applications include the proofs of (i) the binomial theorem for positive integral indices (ii) De Moivre's theorem for a positive integer n (iii) some propositions involving determinants and square matrices (iv) Leibniz's Theorem and some propositions involving the nth derivative.
	of the Principle of Mathematical Induction and their applications		As further development, teachers may discuss with the students cases where the Principle has to be modified. Example:
	Excluding Backward Induction		$x^n + y^n$ is divisible by $x + y$ for all positive odd integers n . Example:
21			The Fibonacci sequence is defined as follows: $a_0 = 0, a_1 = 1$
			$a_{n+1} = a_{n-1} + a_n$ for all natural numbers n. Prove that
			$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$ for all n
			Teachers should point out that a variation of the Principle is required for the proof of these examples. A few more examples on sequences defined by recurrence relations may be discussed.
		12 11	