Detailed Content	Time Ratio	Notes on Teaching
9.2 Existence and uniqueness of solution	5	Students should be able to know the conditions for the existence and uniqueness of solution for a system of linear equations in two or three unknowns. For a system of linear equations in two unknowns: $\begin{aligned} & a_{1} x+b_{1} y=d_{1} \\ & a_{2} x+b_{2} y=d_{2} \end{aligned}$ (i) If $\operatorname{det}\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right) \neq 0$, the system has unique solution. Geometrically, the equations represent a pair of intersecting straight lines. (ii) If $\operatorname{det}\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)=0$ and $\operatorname{det}\left(\begin{array}{ll}d_{1} & b_{1} \\ d_{2} & b_{2}\end{array}\right) \neq 0$, the system has no solution. Geometrically, the equations represent a pair of parallel (but not coincident) straight lines. (iii) If $\operatorname{det}\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)=0$ and $\operatorname{det}\left(\begin{array}{ll}d_{1} & b_{1} \\ d_{2} & b_{2}\end{array}\right)=0$, the system has infinite number of solutions. Geometrically, the equations represent a pair of coincident straight lines. For systems of equation in three unknowns, examples like the following should be mentioned. The corresponding geometrical meaning may be discussed if the students have grasped some ideas of three dimensional coordinate geometry. (i) In solving the equations $\left\{\begin{array}{l} 2 x+y-z=7 \\ 5 x-4 y+7 z=1 \\ 7 x-3 y+6 z=8 \end{array}\right.$ it is obvious that the third one is redundant. Teachers may discuss with the students on the method to obtain the solution $x=\frac{29-3 \lambda}{13}, y=\frac{33+19 \lambda}{13}, z=\lambda$ where λ is arbitrary. (ii) Solving equations like $\left\{\begin{array}{l} x+y+z=3 \\ 2 x-3 y+2 z=1 \quad \text { which are inconsistent. } \\ 3 x-2 y+3 z=7 \end{array}\right.$ Following this manner, the conditions for the existence and uniqueness of solution for a system of equations in three unknowns may be given in more abstract terms.

Unit A10: Complex Numbers

Objective: (1) To learn the properties of complex numbers, their geometrical representations and applications.
(2) To learn the De Moivre's Theorem and its applications in finding the nth roots of complex numbers, in solving polynomial equations and proving trigonometric identities.

Detailed Content	Time Ratio	Notes on Teaching
10.1 Definition of complex	3	A short introduction of the symbol i should be given. The number $z=x+y i$,

10.2 Argand diagram, argument and conjugate

 its real (Rez) and imaginary ($\operatorname{lm} z$) parts. When $x=0, y \neq 0, z=y i$ is said to be purely imaginary and when $y=0, z=x$ is real.Students may be asked what definition should be adopted for the equality of complex numbers, however there is no ordering property for complex numbers.

The sum, difference, product and quotient of two complex numbers should be defined.

Students are expected to know the definitions of the terms modulus $|z|$, argument $\arg z$, principal (value of) argument (or amplitude) and conjugate \bar{z} of a complex number z.

The complex number $z=r(\cos \theta+i \sin \theta)$, in the modulus - argument form (polar form), can be written as $z=\operatorname{rcis} \theta$.

Students are expected to know the following properties of complex numbers:
(i) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
(ii) $\arg z_{1} z_{2}=\arg z_{1}+\arg z_{2}+2 k \pi$ where k is an integer
(iii) $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
(iv) $\arg \frac{z_{1}}{z_{2}}=\arg z_{1}-\arg z_{2}+2 k \pi$ where k is an integer and $z_{2} \neq 0$.

Properties about conjugate complex numbers should be taught:

1. $\overline{\bar{z}}=z$
2. $\bar{z}=0$ iff $z=0$
3. A complex number is self-conjugate (conjugate to itself) iff it is real.
4. $z \cdot \bar{z}=|z|^{2}$

Detailed Content	Time Ratio	Notes on Teaching
$10.4 \mathrm{c}^{\text {th }}$ roots of a complex number and their geometrical interpretation	$\frac{5}{4}$	can be used to express powers of $\cos \theta$ and $\sin \theta$ in terms of sines and cosines of multiples of θ. For example, students should be able to express $\cos ^{4} \theta \sin ^{3} \theta$ as a sum of sines of multiples of θ and $\cos ^{3} \theta \sin ^{4} \theta$ as a sum of cosines of multiples of θ. Students should learn the meaning of the $\mathrm{n}^{\text {th }}$ roots of a complex number. The $\mathrm{n}^{\text {th }}$ roots of unity should be studied in detail. Several examples can be discussed in class: 1. To find the fifth roots of -1 . 2. To solve the equation $z^{4}+z^{3}+z^{2}+z+1=0$. 3. To find the cube roots of $1+i$. 4. Factorize $z^{2 n}-2 z^{n} \cos n \theta+1$ into real quadratic factors.
合	$\begin{aligned} & 25 \\ & 24 \end{aligned}$	

Unit B1: Sequence, Series and their Limits

Objective: (1) To learn the concept of sequence and series.
(2) To understand the intuitive concept of the limit of sequence and series.
(3) To understand the behaviour of infinite sequence and series.

| Detailed Content | Time Ratio | Notes on Teaching |
| :---: | :---: | :---: | :---: |
| 1.1 Sequence and series | 6 | Clear concepts of sequence and series should be provided. The following | suggested versions may be adopted:

If a_{n} is a function of n which is defined for all positive integral values of n, its values $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ are said to form a sequence. The sequence is finite or infinite according to the numbers of terms of it being finite or infinite. Furthermore $\mathrm{a}_{1}+$ $a_{2}+\ldots+a_{n}+\ldots$ is said to form a series. Likewise, it is finite or infinite according to the numbers of terms contained. The notation

$$
S_{n}=\sum_{r=1}^{n} a_{r} \text { or } \sum_{1}^{n} a_{r} \text { is commonly used. }
$$

Some simple rules concerning the operations of sequences and series may be introduced. For the sake of convenience, denote the sequences $a_{1}, a_{2}, a_{3}, \ldots$ and b_{1}, b_{2}, b_{3}, \ldots by $\left\{a_{i}\right\}$ and

$$
\begin{aligned}
\left\{b_{i}\right\}, \text { then (i) } & \left\{a_{i}\right\} \pm\left\{b_{i}\right\}=\left\{a_{i} \pm b_{i}\right\} \\
\text { (ii) } & \lambda\left\{a_{i}\right\}=\left\{\lambda a_{i}\right\},
\end{aligned}
$$

viz, the idea of termwise operations may be touched upon.
Regarding series, the following methods of summation should be discussed
(1) Mathematical induction: already dealth with in Unit A3.
(2) Method of difference: teachers should amplify in the expressing the rth term of the series as the difference of $f(r+1)$ and $f(r)$ where $f(x)$ is a function of x. i.e.
if $a_{r}=f(r+1)-f(r)$
then $\sum_{1}^{n} a_{r}=\sum_{1}^{n}(f(r+1)-f(r))$
$=f(n+1)-f(1)$.
Some typical examples are $\sum_{1}^{n} \frac{1}{r(r+1)}$ and $\sum_{1}^{n} r(r+1)$.

