Detailed Content	Time Ratio	Notes on Teaching
$10.4 \mathrm{c}^{\text {th }}$ roots of a complex number and their geometrical interpretation	$\frac{5}{4}$	can be used to express powers of $\cos \theta$ and $\sin \theta$ in terms of sines and cosines of multiples of θ. For example, students should be able to express $\cos ^{4} \theta \sin ^{3} \theta$ as a sum of sines of multiples of θ and $\cos ^{3} \theta \sin ^{4} \theta$ as a sum of cosines of multiples of θ. Students should learn the meaning of the $\mathrm{n}^{\text {th }}$ roots of a complex number. The $\mathrm{n}^{\text {th }}$ roots of unity should be studied in detail. Several examples can be discussed in class: 1. To find the fifth roots of -1 . 2. To solve the equation $z^{4}+z^{3}+z^{2}+z+1=0$. 3. To find the cube roots of $1+i$. 4. Factorize $z^{2 n}-2 z^{n} \cos n \theta+1$ into real quadratic factors.
合	$\begin{aligned} & 25 \\ & 24 \end{aligned}$	

Unit B1: Sequence, Series and their Limits

Objective: (1) To learn the concept of sequence and series.
(2) To understand the intuitive concept of the limit of sequence and series.
(3) To understand the behaviour of infinite sequence and series.

| Detailed Content | Time Ratio | Notes on Teaching |
| :---: | :---: | :---: | :---: |
| 1.1 Sequence and series | 6 | Clear concepts of sequence and series should be provided. The following | suggested versions may be adopted:

If a_{n} is a function of n which is defined for all positive integral values of n, its values $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ are said to form a sequence. The sequence is finite or infinite according to the numbers of terms of it being finite or infinite. Furthermore $a_{1}+$ $a_{2}+\ldots+a_{n}+\ldots$ is said to form a series. Likewise, it is finite or infinite according to the numbers of terms contained. The notation

$$
S_{n}=\sum_{r=1}^{n} a_{r} \text { or } \sum_{1}^{n} a_{r} \text { is commonly used. }
$$

Some simple rules concerning the operations of sequences and series may be introduced. For the sake of convenience, denote the sequences $a_{1}, a_{2}, a_{3}, \ldots$ and b_{1}, b_{2}, b_{3}, \ldots by $\left\{a_{i}\right\}$ and

$$
\begin{aligned}
\left\{b_{i}\right\}, \text { then (i) } & \left\{a_{i}\right\} \pm\left\{b_{i}\right\}=\left\{a_{i} \pm b_{i}\right\} \\
\text { (ii) } & \lambda\left\{a_{i}\right\}=\left\{\lambda a_{i}\right\},
\end{aligned}
$$

viz, the idea of termwise operations may be touched upon.
Regarding series, the following methods of summation should be discussed
(1) Mathematical induction: already dealth with in Unit A3.
(2) Method of difference: teachers should amplify in the expressing the rth term of the series as the difference of $f(r+1)$ and $f(r)$ where $f(x)$ is a function of x. i.e.
if $a_{r}=f(r+1)-f(r)$
then $\sum_{1}^{n} a_{r}=\sum_{1}^{n}(f(r+1)-f(r))$
$=f(n+1)-f(1)$.
Some typical examples are $\sum_{1}^{n} \frac{1}{r(r+1)}$ and $\sum_{1}^{n} r(r+1)$.

Detailed Content	Time Ratio	Notes on Teaching
		Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{n}, \ldots$ be convergent sequences with limits be a and b respectively, the following sequence are also convergent: (i) $\lambda a_{1}, \lambda a_{2}, \lambda a_{3}, \ldots$ converges λa, where λ is a constant. (ii) $\mathrm{a}_{1}+\mathrm{b}_{1}, \mathrm{a}_{2}+\mathrm{b}_{2}, \mathrm{a}_{3}+\mathrm{b}_{3}, \ldots$ converges to $\mathrm{a}+\mathrm{b}$. (iii) $a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}, \ldots$ converges to $a b$. (iv) $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \frac{a_{3}}{b_{3}}, \ldots$ converges to $\frac{a}{b}$ provided $\mathrm{b} \neq 0$.

Finally, students should be led to appreciate the following results that
(i) for the convergent sequence $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ with limit a ,

$$
\lim _{n \rightarrow \infty} a_{n+k}=\lim _{n \rightarrow \infty} a_{n}=a,
$$

where k is a positive integer.
(ii) for the two convergent sequences
$\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ and $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \ldots$ with the same limit ℓ and if a sequence $\mathrm{c}_{1}, \mathrm{c}_{2}$, c_{3}, \ldots such that $a_{i} \leq c_{i}, \leq b_{i}$ when $i>k$ for some positive integer k, then c_{1}, $\mathrm{c}_{2}, \mathrm{c}_{3}, \ldots$ also converges and to the same limit ℓ. This property is commonly known as the Sandwich Theorem. Teachers may also touch upon the meaning, of monotonic sequence and bounded sequence to broaden students' understanding.
As for infinite series, a parallel treatment could be provided as follows:
(1) Concept of convergence

The series $u_{1}+u_{2}+u_{3}+\ldots$ is convergent if $\lim _{n \rightarrow \infty} \sum_{1}^{n} u_{i}=S$ exists and the series is said to be convergent to the limit. (Sometimes S may be called the sum of the series.) If S_{n} represents $u_{1}+u_{2}+\ldots+u_{n}$, then the result may be stated as $S_{n} \rightarrow S$ as $n \rightarrow \infty$ or $\lim _{n \rightarrow \infty} S_{n}=S$. $\left(S_{n}=u_{1}+u_{2}+\ldots+u_{n}\right.$ is commonly known as the $\mathrm{n}^{\text {th }}$ partial sum). And, in a more or less the same situation, divergent series and/ or oscillatory series may be introduced subject to teachers' preference.
(2) Properties of convergent series $\mathrm{u}_{1}+\mathrm{u}_{2}+\mathrm{u}_{3}+\ldots$ with limit S and $v_{1}+v_{2}+v_{3}+\ldots$ with limit S' then
(a) $\lambda u_{1}+\lambda u_{2}+\lambda u_{3}+\ldots$ converges to λS where λ is a constant.
(b) $\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)+\left(u_{3}+v_{3}\right)$ converges to $S+S^{\prime}$.
(c) If $u_{1}+u_{2}+u_{3}+\ldots$ Is convergent, then $\lim _{n \rightarrow \infty} u_{n}=0$

Detailed Content	Time Ratio	Notes on Teaching
1.3 Convergence of a sequence	5	Further properties of convergent sequence like and series
(i) convergent sequences are bounded		
(ii) a monotonic and bounded sequence is convergent		
should be introduced. Some typical convergent and divergent sequences should be		
discussed so as to illustrate the method in finding limits of sequences. The following		
examples may be considered:		

(A) Convergent sequenc
(i) $a_{n}=x^{n}$ with $|x|<1$
(ii) $a_{n}=\sqrt[n]{n}$
(iii) $a_{n}=\frac{x^{n}}{n!}$
(B) Convergent series
(i) $r+r^{2}+r^{3} \ldots$ with $|r|<1$
(ii) $1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\ldots$
(iii) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots$
(iv) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$
(C) Divergent series
(i) $\sum \frac{1}{n}$
(ii) $\sum\left(1-\frac{1}{\mathrm{n}}\right)^{\mathrm{n}}$
(iii) $\sum \frac{1}{\sqrt{n}}$

Some typical applications of the Sandwich Theorem should be included for illustration whereas convergence tests of series are not required.

Unit B2: Limit, Continuity and Differentiability
Objective: (1) To understand the intuitive concept of the limit of a function.
(2) To understand the intuitive concept of continuity and differentiability of a function.
(3) To recognize limit as a fundamental concept in calculus.

Detailed Content	Time Ratio	Notes on Teaching
2.1 Limit of a function	5	An intuitive understanding of the

An intuitive understanding of the concept of limit of function is expected. As a matter of fact, the concept of the limit of a function $y=f(x)$ at the point $x=a$ can be related to the concept of the limit of a sequence. This is done by allowing the independent variable to run through a convergent sequence of numbers $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ tending to the limit a (the abscissa sequence), and considering the ordinate sequence $\left\{f\left(x_{n}\right)\right\}$. Thus a more vivid visualization of the fact that $\left\{f\left(x_{n}\right)\right\}$ tends to a finite value ℓ as $\left\{x_{n}\right\}$ tends to a could be established i.e.

$$
\mathrm{f}(\mathrm{x}) \rightarrow \ell \text { when } \mathrm{x} \rightarrow \mathrm{a} \text { or } \lim _{\mathrm{x} \rightarrow \mathrm{a}} \mathrm{f}(\mathrm{x})=\ell
$$

Some teachers may perhaps prefer just to focus students' attention to the fact that the difference between $f(x)$ and ℓ can be made arbitrarily small when x is sufficiently close to a so as to reinforce the idea that $\mathrm{f}(\mathrm{x}) \rightarrow \ell$ when $\mathrm{x} \rightarrow \mathrm{a}$. It must be pointed to students that, from the existence of the value $f(a)$ of the function, one can certainly not conclude that the limit $\lim _{x \rightarrow a} f(x)$ must also exist and be equal to $f(a)$, though this is very often the case. The following example may be considered:

$$
f(x)= \begin{cases}1 & \text { when } x \neq 0 \\ 0 & \text { when } x=0\end{cases}
$$

in which $f(0)=0$ and $\lim _{x \rightarrow 0} f(x)=1$
It may be important in the passage to the limit whether the independent variable approaches the value a in the sense of increasing values of x, that is, from the left, or in the sense of decreasing values of x, that is from the right. In these cases, the limits are referred to, respectively, as the left-hand limit, usually denoted by $\lim _{x \rightarrow a^{-}} f(x)$, and the right-hand limit $\lim _{x \rightarrow a^{+}} f(x)$. In this context, students could be led easily to appreciate that the function $f(x)$ has a limit as $x \rightarrow a$ if and only if the left-hand and right-hand limits as $x \rightarrow a$ are equal. For a more comprehensive understanding of limit, teachers should touch upon the case when $x \rightarrow \infty$ by reiterating that the difference between $f(x)$ and ℓ could be made arbitrarily small when x is sufficiently large. Symbolically, it is presented as $\lim _{x \rightarrow \infty} f(x)=\ell$.

