Detailed Content	Time Ratio	Notes on Teaching
		Typical examples of the second type $\int_{0}^{1} \frac{d x}{\sqrt{x}}$ and $\int_{-1}^{1} \frac{d x}{\sqrt{1-x}}$.
		Likewise, teachers may use $\int_{0}^{1} \frac{d x}{\sqrt{x}}$ as illustration that this again is not an
		45
		improper integral as the limit does not exist either.

Unit B6: Application of Integration
Objective: (1) To learn the application of definite integration in the evaluation of plane area, arc length, volume of solid of revolution and area of surface of revolution.
(2) To apply definite integration to the evaluation of limit of sum.

Detailed Content	Time Ratio	Notes on Teaching
6.1 Plane area	5	As a sequel to the definition of definite integral, the area bounded by a curve $y=$

case (i) when $y=f(x)$ is continuous and non-negative in [a, b], then the area so bounded is given by $\int_{a}^{b} f(x) d x$
case (ii) when $f(x)$ is continuous and non-positive in [a, b], the area is given by $-\int_{a}^{b} f(x) d x$

Detailed Content	Time Ratio	
	Teachers should also elaborate on the cases where the area enclosed was made with the y-axis like the following diagram.	
Area given by $-\int_{c}^{\text {andy }}$		

For area bounded by two curves, the following approach together with other variations which are illustrated diagrammatically should be discussed thoroughly with students with adequate exemplification.

$$
\text { Area }=\int_{a}^{b}[f(x)-g(x)] d x
$$

Detailed Content \quad Time Ratio

Detailed Content	Time Ratio

Notes on Teaching

When the equation of the curve is given in parametric form say, $x=x(t) ; y=y(t)$, then the area so enclosed is given by

$$
\frac{1}{2} \int_{t_{0}}^{t_{1}}\left(x \frac{d y}{d t}-y \frac{d x}{d t}\right) d t \text { where the parameter of } A \text { is } t_{0} \text { and } B \text { is } t_{1} \text {. }
$$

A good spectrum of worked examples covering some relatively significant variations of the approaches mentioned is highly desirable to enable a better grasp of the skill on the part of the students. The following ones may be considered:
(1) Find the area bounded by the parabola $y^{2}=5-x$ and the line $y=x+1$. (Note that the area enclosed may be found by integrating with respect to x or to y . Teachers are encouraged to demonstrate both ways.)
(2) Show that the area enclosed by the cardioid $r=a(1+\cos \theta)$ is given by $\frac{3 a^{2} \pi}{2}$.
(3) By using the parametric equation $x=a \cos \theta ; y=b \sin \theta$ of an ellipse, show that the area enclosed is π ab.
(N.B. Teachers are advised to elaborate on the fact that sometimes the special geometrical properties like symmetry of a figure may help simplify the evaluation process.)
6.2 Arc length

The length of arc of the curve $y=f(x)$ between two points on the curve at $x=a$ and $x=b$ is given by

$$
\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

If the curve is given in parametric form $x=x(t) ; y=y(t)$ then the arc length of the curve from $t=t_{1}$ to $t=t_{2}$ is given by

$$
\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

If the curve is given in polar form $r=r(\theta)$, then the arc length of the curve from θ $=\alpha$ to $\theta=\beta$ is given by

$$
\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \text {. }
$$

The following suggested examples are for discussion and illustration:
(1) Show that the perimeter of the closed curve (asteroid) $x=\operatorname{acos}^{3} \theta ; y=\operatorname{asin}^{3} \theta$ is $6 a$.

> (Symmetry of the curve about the axes helps)
(2) Show that the length of 'the circumference of the cardioid $r=a(1+\cos \theta)$ is $4 a$.
(3) Find the length of the arc of the curve $x^{3}=8 y^{2}$ from $x=1$ to $x=3$.
(N.B. In choosing curves for illustration, teachers should be well aware of the case of an ellipse and, if deem desirable, may lead a brief discussion with students so as to broaden their perspective on other branches of mathematics studies. A brief account in this respect is suggested for reference as follows:
For the ellipse $x=a \sin \theta ; y=b \cos \theta\left(\frac{d s}{d \theta}\right)^{2}=\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}=a^{2} \cos 2 \theta+$ $b^{2} \sin ^{2} \theta=a^{2}\left(1-e^{2} \sin ^{2} \theta\right)$ where $e=\frac{b}{a}$ (commonly known as the eccentricity). The arc s measured from an extremity of the minor axis is given by
$a \int_{0}^{\phi} \sqrt{1-\mathrm{e}^{2} \sin ^{2} \theta} \mathrm{~d} \theta$. This integral cannot be expressed in terms of elementary
functions in a finite form. It is called an elliptic integral of the second kind denoted by $\mathrm{E}(\mathrm{e}, \phi)$. For the sake of completeness, teachers may also introduce the elliptic integral of the first kind, viz

$$
\left.\int_{0}^{\phi} \frac{\mathrm{d} \theta}{\sqrt{1-\mathrm{e}^{2} \sin ^{2} \theta}} \text { which is denoted by } \mathrm{F}(\mathrm{e}, \phi) .\right)
$$

It is desirable to have some preliminary discussion with the students on the meaning and formation of solids of revolution while the term axis of revolution should also be introduced so that students may be able to identify solids of revolution and visualize the solids formed when certain segment of curve or region is revolving about certain axis. Teachers may then touch upon the two common methods in finding volume of revolution, viz,

Teachers should emphasize on the expression of the volume element $\Delta \mathrm{V}$ or dV that $d V=\pi y^{2} d x$ which is the volume of the disc. The volume of the solid is given by $\pi \int_{a}^{b} y^{2} d x$.

Teachers are also advised to elaborate a bit more on $\pi \int_{c}^{d} x^{2} d y$ which is the case when the curve is revolving about the y-axis.
(2) The Shell Method

In teaching this interesting application of definite integral, it is advisable to start with some simple and obvious series like $\frac{1}{n^{2}}+\frac{2}{n^{2}}+\ldots+\frac{n-1}{n^{2}}+\frac{n}{n^{2}}$, and students should be provided with adequate hints so that they manage to associate the limit of sum of the series with the limit of sum leading to the relevant definite integral in a suitable interval and with pertinent partition and most important of all with the appropriate integrand, viz
$f(x)=x$ in $[0,1]$ with partition $0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1$.

Detailed Content	Time Ratio	Notes on Teaching
		It would not be a difficult task for students to establish the result that $\begin{aligned} & \lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}+\frac{2}{n^{2}}+\ldots+\frac{n}{n^{2}}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n} \cdot \frac{1}{n} \\ &=\int_{0}^{1} x d x \\ &=\frac{1}{2} \end{aligned}$ Other examples of great mathematical insight like (1) $\lim _{n \rightarrow \infty}\left(\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{2 n-1}\right)=\int_{0}^{1} \frac{d x}{1+x}=\ell n 2$ (2) $\begin{aligned} & \lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}}+\frac{n}{n^{2}+1}+\ldots+\frac{n}{n^{2}+(n-1)^{2}}\right) \\ & =\int_{0}^{1} \frac{d x}{1+x^{2}}=\frac{\pi}{4} \end{aligned}$ (3) $\begin{aligned} & \lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}}}+\frac{1}{\sqrt{n(n+1)}}+\ldots+\frac{1}{\sqrt{n(2 n-1)}}\right) \\ & =\lim _{n \rightarrow \infty} \frac{1}{n}\left(1+\frac{1}{\sqrt{1+\frac{1}{n}}}+\ldots+\frac{1}{\sqrt{1+\frac{n-1}{n}}}\right) \\ & =\int_{0}^{1} \frac{d x}{\sqrt{1+x}}=2(\sqrt{2}-1) \end{aligned}$ may be provided to further their understanding and manipulative technique. The following example is worth discussing as it brings exhilarating result: To find $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n}!}{n}$ by transforming it into
Detailed Content	Time Ratio	Notes on Teaching
	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	obtain $y=e^{-1}$ (N.B. Teachers may relate this part to Unit B5 in which the idea of Riemann sum expressed as a limit of sum of a series is touched upon.) However, students should be reminded that not all limits of sum can be dealt with using this approach, the harmonic series, $\sum \frac{1}{\mathrm{n}}$, is an example.

