



## EXEMPLAR 5:

# Formula for Arc Length

**Objectives:** (1) To explore the relation between the arc length and the angle at centre of a sector.

(2) To find the formula for the arc length of a sector

## Key Stage: 3

Learning Unit: More about Areas and Volumes

Materials Required: Dynamic Geometry software such as *Geometer's Sketchpad* (later referred as *Sketchpad*) and the file arc01.gsp

Prerequisite Knowledge: Basic concepts about angles and ratio

## **Description of the Activity:**

- 1. The teacher explains the terms "arc", "arc length" and "angle at centre" to the class.
- 2. The teacher distributes the worksheet to students and briefly explains the activity.
- 3. Students are asked to complete the worksheet by using the *Sketchpad* file arc01.gsp (see figure below).



In completing the tasks on the worksheet, students need to make a conjecture on the relation between the arc length and the angle at centre of a sector.

- 4. After completing the worksheet, the teacher invites some students to present their conjectures to the class.
- 5. The teacher guides students to conclude that
  - (a) the arc length and the corresponding angle at centre are always in a constant ratio; and
  - (b) point (a) is true for circles of different radii.
- 6. The teacher asks students to suggest proofs for their conjectures.
- 7. The teacher makes comments on students' proofs and shows the proof to students if necessary.
- 8. The teacher guides students to deduce the formula for the arc length of a sector.

# Worksheet: To investigate the relation between the arc length and the angle at centre of a sector

#### **Instructions:**

- 1. Open the *Sketchpad* file arc01.gsp.
- 2. Drag the point *B* to obtain a circle of appropriate size if necessary.
- Measure and fix the radius of the circle.
  Drag the point *C* on the circle to obtain different arc lengths and different angles at centre. Record 5 different sets of arc lengths and their corresponding angles at centre in Table 1.

| Data | Arc length (cm) | Corresponding angle at centre |
|------|-----------------|-------------------------------|
| 1    |                 |                               |
| 2    |                 |                               |
| 3    |                 |                               |
| 4    |                 |                               |
| 5    |                 |                               |

The radius of the circle = \_\_\_\_\_ cm.

| Tal | ble | 1 |
|-----|-----|---|
|     |     |   |

4. Is there any relation between the arc length and its corresponding angle at centre? Write down your conjecture below. 5. Drag the point *B* on the circle to get a circle of a different radius. Repeat point 3 above and record a new set of data in Table 2.

The radius of the circle = \_\_\_\_\_ cm.

| Data | Arc length (cm) | Corresponding angle at centre |
|------|-----------------|-------------------------------|
| 1    |                 |                               |
| 2    |                 |                               |
| 3    |                 |                               |
| 4    |                 |                               |
| 5    |                 |                               |



6. Does your conjecture from question 4 still hold?

7. Discuss with your classmates why your conjecture still holds.

#### **Notes for Teachers:**

- 1. The teacher should load the file arc01.gsp onto the server. If it is not possible to do so, the teacher may distribute diskettes containing the file to students.
- 2. It should be aware that the ratio between the arc length and the angle at centre might not be a constant due to the rounding error.
- 3. It should be noted that the some of the terms used in the *Sketchpad* file may be different from the usual terminology used by students when they construct the *Sketchpad* file by themselves. For example, they have to use "Arc angle  $\overrightarrow{ABC}$ " to measure  $\angle BAC$  and use "Arc length  $\overrightarrow{ABC}$ " to measure the arc length  $\overrightarrow{BC}$ . Afterwards, they have to rename the angle by highlighting "Arc angle  $\overrightarrow{ABC}$ " and choose the **Text Tool** icon  $\overrightarrow{C}$ . Hold down to select the **Number Lock** and double click the "Arc angle  $\overrightarrow{ABC}$ " until an **Edit Math-Formatted Text** dialogue box appears. Type "{!:*A*}*CAB*" in the **Math Format String** and press **Apply** to change the name "Arc angle  $\overrightarrow{ABC}$ " to " $\angle CAB$ ". Repeat the above process and enter "Arc length {*A:BC*}" to change the name "Arc length {*ABC*" to "Arc length  $\overrightarrow{ABC}$ ".
- 4. The teacher can use sectors of the same radius with angles at centre equal to 10° and 20° to explain the fact that the arc length is directly proportional to the angle at centre.

| Data | Arc length ( s cm ) | Corresponding angle at centre ( $\theta^{\circ}$ ) | $\frac{s}{r}$ |
|------|---------------------|----------------------------------------------------|---------------|
| 1    |                     |                                                    |               |
| 2    |                     |                                                    |               |
| 3    |                     |                                                    |               |
| 4    |                     |                                                    |               |
| 5    |                     |                                                    |               |

5. For less able students, Table 1 can be modified as follows: