

EXEMPLAR 28 :

Trigonometric Identities

Objective: To explore some relations of trigonometric ratios

Key Stage: 3

Learning Unit: Trigonometric Ratios and Using Trigonometry

Materials Required: Microsoft Excel and file Trigo_Iden.xls

Prerequisite Knowledge: Definitions of the trigonometric ratios for acute angles

Description of the Activities:

Activity I: Trigonometric relations $\sin^2\theta + \cos^2\theta = 1$, $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\sin(90^\circ - \theta) = \cos \theta$ and $\cos(90^\circ - \theta) = \sin \theta$

- 1. The teacher briefly reviews the definitions of sine, cosine and tangent ratios of an acute angle at the beginning of the lesson.
- 2. The teacher divides students into groups of two. The teacher distributes Worksheet 1 and the *Excel* file Trigo_Iden.xls to each student. Each group needs to use the worksheet "Id_1" in the *Excel* file to find a relation between $\sin\theta$, $\cos\theta$ and $\tan\theta$ (see figure below).

	A	В	C.	D	E	1.2	G	н	160 -	E.	
1	ø	sin d	cos 8	tan 8	0						1
2	5	0.087156	0.996195	0.087489							
3	1000	00000000	1000000	0200030050							
4											
5											
6											
7											
8			1								
9											
10											
11		1									
12		1	-								
13											
14											
15											
16											1
17		1					1		1		
18											
	HALL	(1.2/Set)/					it also				140

Students are expected to fill in other values of θ in step 5 of Worksheet 1. The computer can be used to generate their corresponding values of trigonometric ratios. From these, students are expected to discover the trigonometric relations

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
, $\sin^2 \theta + \cos^2 \theta = 1$, $\sin(90^\circ - \theta) = \cos \theta$ and $\cos(90^\circ - \theta) = \sin \theta$.

- 3. If students cannot discover the above relations, the teacher may suggest students to consider $\sin\theta + \cos\theta$, $\sin\theta \cos\theta$, $\sin\theta \times \cos\theta$, $\sin\theta \div \cos\theta$, $\sin^2\theta$ and $\cos^2\theta$ in the columns E to J respectively.
- 4. Students may also find that the relations still hold for other values of θ such as 1°, 37°, 32.5°, 68.7°, etc.
- 5. The teacher asks students to discuss with their partners the proofs of these relations. Worksheet 2 is distributed to them. They are expected to write down their proofs.
- 6. The teacher summarizes the result and gives the proof to students if necessary.

Activity II: Relation between $tan (90^{\circ}-\theta)$ and $tan \theta$ (Homework Assignment)

- 1. As students have learned that there may be some connection between $90^{\circ}-\theta$ and θ , it is natural for them to consider tan $(90^{\circ}-\theta)$ and tan θ in order to explore a relation between these two quantities.
- 2. The teacher distributes the *Excel* file Trigo_Iden.xls to students (see figure below). Students need to select the worksheet "Id_2" to explore a relation between tan $(90^\circ \theta)$ and tan θ as a homework assignment. They are also required to suggest a proof to their conjecture.

	٨	В	0	D	E	F	6	Н	1	1 -	*
1	8	90%-8	tan 0	tan(90%-8)							
2	5	85	0.087489	11,43005			-				
3	0.000	101.5									
4											
5	3										
6	S										
7											
8	3										
9	2			2							
10											
11	-										
12	8										
13											
14		-									
15	2			· · · · · ·							
16											1.00
17											1
18	8			-							
	· · (HI)	H.J. (Shend)					181	1		1	ME

3. The teacher gives the answers to students after students hand in their assignments.

Worksheet 1: Relation among $\sin\theta$, $\cos\theta$ and $\tan\theta$

- 1. Open the *Excel* file Trigo_Iden.xls and select the worksheet "Id_1".
- 2. Input the values 10 to 85 in cells A3 to A18.
- 3. Calculate the corresponding values of $\sin\theta$, $\cos\theta$ and $\tan\theta$ by copying the formula of B2 to cells B3 to B18, etc.
- 4. Can you find a relation / relations among the trigonometric ratios?

Write down your conjecture(s) below.

If not, calculate the corresponding values of $\sin\theta + \cos\theta$, $\sin\theta - \cos\theta$, $\sin\theta \times \cos\theta$, $\sin\theta \div \cos\theta$, $\sin^2\theta$ and $\cos^2\theta$ and fill in columns E to J.

5. Enter different values of θ such that 1°, 37°, 32.5°, 68.7°, etc. Repeat the calculation stated in step 3. Does your conjecture(s) in step 4 still hold?

=	cos ()
=	cos ()
		$= \cos \left(\frac{1}{2} + \cos $

6. Use the *Excel* file to fill in the Table below.

7. Can you find a relation between $\sin\theta$ and $\cos\theta$?

[Hint: $\sin \theta = \cos (\ ?\)$ and $\cos \theta = \sin (\ ?\)$]

Write down your conjecture(s) below.

8. Does your conjecture in step 7 above still hold for other values of θ ?

Worksheet 2: Proofs of the Trigonometric Relations

- 1. To prove that $\tan \theta = \frac{\sin \theta}{\cos \theta}$.
 - (a) Express the trigonometric ratios in terms of a, b and c.

(b) (i) Using the results of (a) (i) and (a) (ii), find $\frac{\sin \theta}{\cos \theta}$ in terms of a, b and c.

(ii) Comparing your result in b(i) with that in (a) (iii), what do you notice?Write down your conclusion.

2. Use Fig.2 to prove that $\sin^2\theta + \cos^2\theta = 1$.

3. Use Fig.3 to prove that $\sin(90^\circ - \theta) = \cos\theta$ and $\cos(90^\circ - \theta) = \sin\theta$.

Notes for Teachers:

- 1. This exemplar aims at developing the trigonometric relations $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\sin^2 \theta + \cos^2 \theta = 1$, $\sin(90^\circ - \theta) = \cos \theta$, $\cos(90^\circ - \theta) = \sin \theta$ and $\tan(90^\circ - \theta) = \frac{1}{\tan \theta}$.
- 2. The teacher should remind students that the units for the angles are omitted in the *Excel* file for convenience. As a result, we input 10 instead of 10°, etc. Besides, in *Excel*, the calculations of built-in functions are in the radian measure. Some convention must be made to change the input angle from the degree measure to the radian measure in order to use the built-in functions. This is the reason why we enter the formula " $=\sin(A2*PI()/180)$ " into cell B2 to calculate the value of sin θ in the worksheet "Id_1" of the *Excel* file Trigo_Iden.xls.
- 3. The meanings of sine, cosine and tangent for the special angles 0° and 90° are not introduced here. The teacher may remind students that the trigonometric relations in this exemplar still hold for these special angles.
- 4. For the less able students, the teacher may suggest students to add a column $\frac{1}{\tan \theta}$ as a hint to the investigation in the homework assignment in Activity II. If it deems necessary to provide worksheet for students, the teacher can refer to Part II of the Exemplar 9 in the "Teaching Package on S1-5 Mathematics 1: Use of Information Technology" produced by the Mathematics Section of the Education Department in 2001.