

Exemplar 6:

Exploring Zero Index and N egative Integral Indices

Objectives : (1) To recognise that $\mathrm{a}^{0}=1$ where $\mathrm{a} \neq 0$
(2) To recognise that $a^{-n}=\frac{1}{a^{n}}$

Key Stage : 3

Learning Unit : Laws of Integral Indices

Materials Required : Calculators

Prerequisite Knowledge : (1) Use of calculators in finding a^{n}
(2) Laws of indices involving positive integral indices

Description of the Activity :

1. The teacher revises with students how to use the button x^{y} of a calculator to find the value of a^{n} and a^{-n}.
2. The teacher then distributes Worksheet 1 and asks students to suggest the value of a^{0} after completing the worksheet.
3. The teacher distributes Worksheet 2 and asks students to suggest the meaning of a^{-n}.

Worksheet 1

1. Use a calculator to find the value of a^{0} in each case and complete the table.

a	1	1.5	2	200	-1	-1.5	-111.1
a^{0}							

2. From the above table, the value of $a^{0}=$ \qquad .
3. Can you find 0^{0} ? What do you get from your calculator?
4. For any non-zero real number $a, a^{m} \times a^{n}=a^{m+n}$, where m and n are positive integers. Assuming that this law also holds true for numbers with a zero index, find
(i) $\mathrm{a}^{\mathrm{m}} \times \mathrm{a}^{0}=\mathrm{a}$$\square+\square$ $=\mathrm{a}$
(ii) $\mathrm{a}^{0} \times \mathrm{a}^{\mathrm{m}}=$ \qquad $=$ \qquad
5. From questions 1 and 4 , can you suggest the value of a^{0} ? $a^{0}=$ \qquad for $a \neq$ \qquad

Worksheet 2

1. Complete the following tables with the help of a calculator.

(i) | $2^{1}=2$ | $2^{-1}=0.5$ | $2^{1} \times 2^{-1}=2 \times 0.5=1$ |
| :--- | :--- | :--- |
| $2^{2}=$ | $2^{-2}=$ | $2^{2} \times 2^{-2}=\ldots \times$ |
| $2^{3}=$ | $2^{-3}=$ | |
| $2^{4}=$ | $2^{-4}=$ | |
| $2^{5}=$ | $2^{-5}=$ | |

From your observation, $2^{n} \times 2^{-n}=$ \qquad

(ii) | $(-5)^{1}=-5$ | $(-5)^{-1}=-0.2$ | $(-5)^{1} \times(-5)^{-1}=(-5) \times(-0.2)=1$ |
| :--- | :--- | :--- |
| $(-5)^{2}=$ | $(-5)^{-2}=$ | $(-5)^{2} \times(-5)^{-2}=\ldots \times$ |
| $(-5)^{3}=$ | $(-5)^{-3}=$ | |
| $(-5)^{4}=$ | $(-5)^{-4}=$ | |
| $(-5)^{5}=$ | $(-5)^{-5}=$ | |

From your observation, $(-5)^{\mathrm{n}} \times(-5)^{-\mathrm{n}}=$ \qquad
2. From the result above, what is the value of $a^{n} \times a^{-n}$ for non-zero integral values of a?
\qquad
\qquad
3. For any non-zero real number $a, a^{m} \times a^{n}=a^{m+n}$ and $a^{m} \div a^{n}=a^{m-n}$, where m and n are positive integers. Assuming that these laws also hold for negative integral indices, find
(i) $\mathrm{a}^{\mathrm{n}} \times \mathrm{a}^{-\mathrm{n}}=\mathrm{a}$
 ${ }^{\square}=$ \qquad
(ii) $\mathrm{a}^{\mathrm{n}} \times \frac{1}{\mathrm{a}^{\mathrm{n}}}=\mathrm{a}^{\mathrm{n}} \div \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\square-\square}=\mathrm{a}^{\square}=$ \qquad
From your observation, $\mathrm{a}^{-\mathrm{n}}=$ \qquad for $a \neq$ \qquad

Notes for Teachers :

1. The teacher should remind students how to attach a negative sign to a number by using the button +/- of a calculator. Particular attention should be paid to the calculation of values like $5^{-2},(-5)^{-2}$, etc.
2. Answers to Worksheets

Worksheet 1
(1)

a	1	1.5	2	200	-1	-1.5	-111.1
a^{0}	1	1	1	1	1	1	1

(2) $a^{0}=1$
(3) An error message, usually denoted by " E "
(4) (i) $a^{m+0}=a^{m}$
(ii) $\mathrm{a}^{0+\mathrm{m}}=\mathrm{a}^{\mathrm{m}}$
(5) $\mathrm{a}^{0}=1$, for $\mathrm{a} \neq 0$

Worksheet 2
(1) (i)

4	0.25	$\underline{4} \times \underline{0.25}=\underline{1}$
8	0.125	$8 \times 0.125=1$
16	0.0625	$16 \times 0.0325=1$
32	0.03125	$23 \times 0.03125=1$

$$
2^{n} \times 2^{-n}=1
$$

(ii)

25	0.04	$\underline{25} \times \underline{0.04}=\underline{1}$
-125	0.008	$(-125) \times(-0.008)=1$
625	0.0016	$625 \times(0.0016)=1$
-3125	0.00032	$(-3125) \times(-0.00032)=1$

$$
(-5)^{\mathrm{n}} \times(-5)^{-\mathrm{n}}=1
$$

(2) $\mathrm{a}^{\mathrm{n}} \times \mathrm{a}^{-\mathrm{n}}=1$
(3) (i) $\mathrm{a}^{\mathrm{n}+(-\mathrm{n})}=\mathrm{a}^{0}=1$
(ii) $\mathrm{a}^{\mathrm{n}-\mathrm{n}}=\mathrm{a}^{0}=1$
$\mathrm{a}^{-\mathrm{n}}=\frac{1}{\mathrm{a}^{\mathrm{n}}}, \quad$ for $\mathrm{a} \neq 0$
3. In finding the value of 0^{0}, some students may write ' E ' as the answer. The teacher should point out that it is incorrect to write $0^{0}=\mathrm{E}$. ' E ' only denotes an error message from a calculator.
4. The teacher may ask the students to make conjectures on the values of a^{0} and $\mathrm{a}^{-\mathrm{n}}$ so as to encourage discussion.
5. A brief review of the laws of indices involving positive integral indices may be appropriate for less able students.

