

Exemplar 6 : Exploring Zero Index and Negative Integral Indices

<u>Sumber& A</u> looba

- **Objectives :** (1) To recognise that $a^0=1$ where $a \neq 0$
 - (2) To recognise that $a^{-n} = \frac{1}{a^n}$
- Key Stage: 3
- Learning Unit : Laws of Integral Indices

Materials Required : Calculators

Prerequisite Knowledge: (1) Use of calculators in finding aⁿ
(2) Laws of indices involving positive integral indices

Description of the Activity :

- 1. The teacher revises with students how to use the button x^{y} of a calculator to find the value of a^{n} and a^{-n} .
- 2. The teacher then distributes Worksheet 1 and asks students to suggest the value of a⁰ after completing the worksheet.
- 3. The teacher distributes Worksheet 2 and asks students to suggest the meaning of a^{-n} .

Worksheet 1

a	1	1.5	2	200	-1	-1.5	-111.1
a^0							

1. Use a calculator to find the value of a^0 in each case and complete the table.

- 2. From the above table, the value of $a^0 =$ _____.
- 3. Can you find 0° ? What do you get from your calculator?
- 4. For any non-zero real number a, $a^m \times a^n = a^{m+n}$, where m and n are positive integers. Assuming that this law also holds true for numbers with a zero index, find
 - (i) $a^m \times a^0 = a^+ = a$
 - (ii) $a^{0} \times a^{m} = ___=$
- 5. From questions 1 and 4, can you suggest the value of a^0 ?

 $a^0 =$ _____ for $a \neq$ _____

Worksheet 2

(i)	$2^{1} = 2$	$2^{-1}=0.5$	$2^{1} \times 2^{-1} = 2 \times 0.5 = 1$
	$2^{2} =$	2 ⁻² =	$2^2 \times 2^{-2} = ___ \times __= __$
	2 ³ =	2 ⁻³ =	
	2 4 =	2 ⁻⁴ =	
	2 ⁵ =	2 ⁻⁵ =	

1. Complete the following tables with the help of a calculator.

From your observation, $2^n \times 2^{-n} =$

(ii)	$(-5)^1 = -5$	$(-5)^{-1} = -0.2$	$(-5)^1 \times (-5)^{-1} = (-5) \times (-0.2) = 1$
	$(-5)^2 =$	$(-5)^{-2} =$	$(-5)^{2} \times (-5)^{-2} = ___ \times ___ = ___$
	$(-5)^3 =$	$(-5)^{-3} =$	
	$(-5)^4 =$	$(-5)^{-4} =$	
	$(-5)^5 =$	$(-5)^{-5} =$	

From your observation, $(-5)^n \times (-5)^{-n} =$

- 2. From the result above, what is the value of $a^n \times a^{-n}$ for non-zero integral values of a ?
- 3. For any non-zero real number a, $a^m \times a^n = a^{m+n}$ and $a^m \div a^n = a^{m-n}$, where m and n are positive integers. Assuming that these laws also hold for negative integral indices, find
 - (i) $a^{n} \times a^{-n} = a^{+} = a^{-} = a^{-}$ (ii) $a^{n} \times \frac{1}{a^{n}} = a^{n} \div a^{n} = a^{-} = a^{-} = a^{-}$

From your observation, $a^{-n} =$ _____ for $a \neq$ _____

Notes for Teachers :

- 1. The teacher should remind students how to attach a negative sign to a number by using the button +- of a calculator. Particular attention should be paid to the calculation of values like 5^{-2} , $(-5)^{-2}$, etc.
- 2. Answers to Worksheets

Worksheet 1

(1)	а	1	1.5	2	200	-1	-1.5	-111.1
	a ⁰	1	1	1	1	1	1	1

- (2) $a^0 = 1$
- (3) An error message, usually denoted by "E"
- (4) (i) $a^{m+0} = a^m$

(ii)
$$a^{0+m} = a^{m}$$

(5) $a^0 = 1$, for $a \neq 0$

Worksheet 2

(1) (i)	4	0.25	$\underline{4} \times \underline{0.25} = \underline{1}$	
	8	0.125	$8 \times 0.125 = 1$	
	16	0.0625	$16 \times 0.0325 = 1$	
	32	0.03125	$23 \times 0.03125 = 1$	
	$2^{n} \times 2^{-n} = 1$			

(ii)	25	0.04	$\underline{25} \times \underline{0.04} = \underline{1}$
	-125	0.008	$(-125) \times (-0.008) = 1$
	625	0.0016	$625 \times (0.0016) = 1$
	-3125	0.00032	$(-3125) \times (-0.00032) = 1$

$$(-5)^n \times (-5)^{-n} = 1$$

(2)
$$a^{n} \times a^{-n} = 1$$

(3) (i)
$$a^{n+(-n)} = a^{0} = 1$$

(ii) $a^{n-n} = a^{0} = 1$
 $a^{-n} = \frac{1}{a^{n}}$, for $a \neq 0$

- 3. In finding the value of 0^0 , some students may write 'E' as the answer. The teacher should point out that it is incorrect to write $0^0 = E$. 'E' only denotes an error message from a calculator.
- 4. The teacher may ask the students to make conjectures on the values of a^0 and a^{-n} so as to encourage discussion.
- 5. A brief review of the laws of indices involving positive integral indices may be appropriate for less able students.