Use of

Objective :

To explore the properties of parallelogram

Dimension :
Measures, Shape and Space

Learning Unit :

Key Stage :

Materials Required: Geometer's Sketchpad

Prerequisite Knowledge: Definition of parallelogram

Description of the Activity :

1. The teacher asks students to
(a) construct the line segments AB and AC ,
(b) construct a line through C parallel to AB and a line through B parallel to AC,
(c) construct the line segments CD and BD , where D is the point of intersection of the lines in (b),
(d) construct diagonals AD and BC and label their point of intersection as E ,
(e) hide the lines constructed in (b).

Figure 3.1 is an illustration.

Figure 3.1

Use of

Information Technology
Geometer's Sketchpad
(f) Rename point C as D and point D as C . See Figure 3.2.

Figure 3.2
2. The teacher asks students to do the investigation in Worksheet 3.1.
(a) Measure $\angle \mathrm{ABC}, \angle \mathrm{BCD}, \angle \mathrm{CDA}$ and $\angle \mathrm{DAB}$. What relationships can you observe among these angles?
(b) Measure the lengths $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA . How are the sides related?
(c) Measure the lengths AE, EC, BE and ED. What can you say about the diagonals of a parallelogram?
(d) [Optional] What kind of symmetry does a parallelogram have?
3. Students are asked to compare and discuss their results with their classmates. Some students are invited to present their findings to the class. The teacher then helps them summarise the properties of parallelogram.

Use of

Information Technology

Instruction :

1. Construct the line segments AB and AC .
2. Construct a line through C parallel to $A B$ and a line through B parallel to $A C$.
3. Construct the line segments CD and BD , where D is the point of intersection of the lines mentioned in step 2.
4. Construct diagonals AD and BC and their point of intersection, E .
5. Hide the lines constructed in step 2.
6. Rename point C as D and point D as C .

Investigation :

During the investigation, you can drag the vertices of the parallelogram to change its shape.
(a) Measure $\angle \mathrm{ABC}, \angle \mathrm{BCD}, \angle \mathrm{CDA}$ and $\angle \mathrm{DAB}$.

What relationships can you say about
(i) the opposite angles of a parallelogram?
(ii) any two consecutive interior angles (e.g. $\angle \mathrm{ABC}$ and $\angle \mathrm{BCD}$) of a parallelogram?

Do the relationships hold for all parallelograms?
\qquad
\qquad
\qquad
(b) Measure the lengths $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA . How are the sides related? Does it hold for all parallelograms?
\qquad
\qquad
(c) Measure $\mathrm{AE}, \mathrm{EC}, \mathrm{BE}$ and ED . What can you say about the diagonals of a parallelogram? Does it hold for all parallelograms?
(d) [Optional] What kind of symmetry does a parallelogram have?

Use of

Information Technology

Exemplar 3

1. There are many different methods to construct the parallelogram. The method given here is only a suggestion. The teacher can use other methods to obtain the same figure. For example, we can use translation to construct the opposite sides of a parallelogram. Nevertheless, the level of difficulty and the prerequisite knowledge of students should be considered.
2. Suggested answers to Worksheet 3.1.
(a) (i) Opposite angles are equal.
(ii) Any two consecutive interior angles are supplementary, i.e., the sum of the two consecutive interior angles is 180°.
(b) Opposite sides are equal.
(c) Diagonals bisect each other.
(d) A parallelogram has 180° rotational symmetry.
3. As the students are assumed to be familiar with the definition of parallelogram, the teacher should ask them to focus upon the properties of the diagonals and the relationship of the angles. At the end of the lesson, the teacher can conclude with a list of all the properties of parallelogram that students have discovered on the blackboard.
4. The teacher should explain to students that the renaming action in step 6 of Worksheet 3.1 is necessary because Geometer's sketchpad automatically assign a name to the point constructed in sequence.

Use of

Information Technology

(I) Construct the parallelogram ABCD

1. Click the Segment tool \square and drag to draw a horizontal segment $\mathbf{A B}$.
2. Click on point \mathbf{A}, and drag to construct $\mathbf{A C}$.
3. Click the Selection Arrow tool \downarrow. Hold down the Shift key. Select point \mathbf{C} and AB. Go to the Construct menu and choose Parallel Line.
4. Hold down the Shift key. Select point B and AC. Select Construct | Parallel Line.
5. Hold down the Shift key. Select the two lines constructed in steps 3 and 4. Select Construct | Point At Intersection.
6. Hold down the Shift key. Select points C and D. Select Construct | Segment. Construct line segment BD in a similar way.
7. Hold down the Shift key. Select points A and D. Select Construct | Segment. Construct diagonal BC in a similar way.
8. Hold down the Shift key. Select the line passing through B and D and the line passing through C and D. Select Display | Hide Lines.
9. Click the Text tool and label the vertices. Double click the label, a Relabel window will appear. Enter the new label in the label box.
(II) Measure the sizes of angles
10. To measure $\angle \mathrm{ABC}$, click the Selection Arrow tool $+$.
11. Hold down the Shift key. Select the points A,B and \mathbf{C} in order.
12. Select Measure \mid Angle.
13. Repeat steps 1 to 3 to measure the other angles.

(III) Measure the lengths of line segments

1. To measure the length of $\mathbf{A B}$, click the Selection Arrow tool \dagger and click the line segment $\mathbf{A B}$ to select it.
2. Select Measure | Length.
3. Repeat steps 1 and 2 to measure the lengths of the other line segments.

Use of

Information Technology

Exemplar 3

(IV) Create a "Fast" button for construction

1. Use a selection marquee to select your constructed parallelogram.
2. Select Work | Make Script.
3. Select File \mid New Sketch. Use the Point tool \quad to construct three points in your sketch.
4. Select all the points, click back onto your Script window, and click on the Fast button. You should see a parallelogram constructed in your sketch.
5. Click back on the Script window. Select File | Save. Any time in the future you need such a figure, simply open your script and then construct three points. Click the Fast button and you can get the figure.
(Similar steps could be applied for sketching a square, rectangle or rhombus)
