Use of

Information Technology
Exemplar 9

*

Objectives :
To explore the trigonometric identities :
(1) $\tan \theta=\frac{\sin \theta}{\cos \theta}$
(2) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(3) $\sin \left(90^{\circ}-\theta\right)=\cos \theta$
(4) $\cos \left(90^{\circ}-\theta\right)=\sin \theta$
(5) $\tan \left(90^{\circ}-\theta\right)=\frac{1}{\tan \theta}$

Dimension : Measures, Shape and Space

Learning Unit : Trigonometric Ratios and Using Trigonometry
Key Stage : 3

Materials Required : Excel and the file 09_ex_e.xls

Prerequisite Knowledge : Definitions of the trigonometric ratios for acute angles

Description of the Activity :

1. The teacher reviews the definitions of sine, cosine and tangent of an acute angle at the beginning of the lesson.
2. The teacher divides students into groups and distributes Worksheet 9.1 and the file 09_ex_e.xls in a diskette to students.
3. Students are asked to complete Part I of Worksheet 9.1 by using the worksheet "Identities_1" in the Excel file "09_ex_e.xls" provided in the diskettes. See Figure 9.1. The purpose of the worksheet "Identities_1" is to explore the trigonometric identities
$\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\sin ^{2} \theta+\cos ^{2} \theta=1$.

Use of

Excel

Figure 9.1
4. Some group representatives are asked to present their conjectures and proofs. The teacher can make comments at appropriate times.
5. Students are asked to use the worksheet "Identities_2" in the same file as shown in Figure 9.2 to explore other trigonometric relations. Complete Part II of Worksheet 9.1. The purpose of the worksheet "Identities_2" is to explore the trigonometric identities $\sin \left(90^{\circ}-\theta\right)=\cos \theta, \cos \left(90^{\circ}-\theta\right)=\sin \theta$ and $\tan \left(90^{\circ}-\theta\right)=\frac{1}{\tan \theta}$.

Use of
Information Technology
Exemplar 9

Figure 9.2
6. Some group representatives are asked to present their conjectures and proofs. The teacher can make comments at appropriate times.

Use of

1. Open the Excel file "09_ex_e.xls" and select worksheet "Identities_1".
2. Input the values of θ from 2° to 90° in cells A4 to A 92 .
3. Calculate the corresponding values of $\sin \theta, \cos \theta, \tan \theta, \sin \theta / \cos \theta, \sin ^{2} \theta, \cos ^{2} \theta$ and $\sin ^{2} \theta+\cos ^{2} \theta$.
4. By referring to the values obtained in step 3, answer the following questions:
(a) As θ increases from 0° to 90°, the value of $\sin \theta$ increases / decreases* from
\qquad to \qquad .
(b) As θ increases from 0° to 90°, the value of $\cos \theta$ increases / decreases* from
\qquad to \qquad .
(c) As θ increases from 0° to 90°, the value of $\tan \theta$ increases / decreases* from
\qquad to \qquad .

* delete the inappropriate word

5. Write down conjectures.
(a) What is the relation among $\sin \theta, \cos \theta$ and $\tan \theta$?
\qquad
\qquad
\qquad
(b) What can you say about the value of $\sin ^{2} \theta+\cos ^{2} \theta$?
\qquad
\qquad
\qquad

Use of

6. Enter different non-integral values of θ such as $32.5^{\circ}, 65.8^{\circ}, 89.9^{\circ}$, etc.

Repeat the calculation stated in step 3.
Do your conjectures in step 5 still hold?
\qquad
\qquad
\qquad
7. To prove the conjectures:
(a) Express the trigonometric ratios in terms of a, b and c .
Figure 9.1a
(i) $\sin \theta=$ \qquad
(ii) $\cos \theta=$ \qquad
(iii) $\tan \theta=$ \qquad
(b) (i) Using the results of (a) (i) and (a) (ii), find $\frac{\sin \theta}{\cos \theta}$ in terms of a, b and c.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Comparing your result in b (i) with that in (a) (iii), what do you notice? Write down your conclusion.
\qquad
\qquad

Use of

Information Technology
Excel
(c) Using the results of (a) (i) and (a) (ii), prove that of $\sin ^{2} \theta+\cos ^{2} \theta=1$.
\qquad
\qquad
\qquad

Use of

Information Technology

Exemplar 9

1. Open the Excel file "09_ex_e.xls" and select worksheet "Identities_2".
2. Input the values of θ from 2° to 90° in cells A 4 to A 92 .
3. Calculate the corresponding values of $\sin \theta, \cos \theta, \tan \theta, 90^{\circ}-\theta, \sin \left(90^{\circ}-\theta\right)$, $\cos \left(90^{\circ}-\theta\right), \tan \left(90^{\circ}-\theta\right)$ and $\frac{1}{\tan \theta}$.
4. Write down all the relations you can find from the results.
\qquad
\qquad
\qquad
\qquad
\qquad
5. Enter different non-integral values of θ and repeat the calculations stated in step 3. Check whether the relations in step 4 still hold.
\qquad
\qquad

Use of

Excel
6. To prove the conjectures:
(a) Express the angle A in terms of θ and $\sin \mathrm{A}, \cos \mathrm{A}, \tan \mathrm{A}, \sin \left(90^{\circ}-\theta\right)$, $\cos \left(90^{\circ}-\theta\right)$ and $\tan \left(90^{\circ}-\theta\right)$ in terms of a, b and c .

Figure 9.1b
$\mathrm{A}=$ \qquad

(b) Comparing the results in $\left({ }^{* *}\right)$ and those in $\left({ }^{*}\right)$ in step 7 of Part I, what can you conclude?
\qquad
\qquad
\qquad

Use of

Information Technology
Exemplar 9

1. The teacher needs to prepare the Excel file before the lesson.
2. In Excel, the calculations of built-in trigonometric functions are in the radian measure. Some conversion must be made to change the input angle from the degree measure to the radian measure when the built-in functions are used in calculations.
3. The teacher should bring to students' attention that, if any one trigonometric ratio of an angle is given, the two identities $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\sin ^{2} \theta+\cos ^{2} \theta=1$ may be used to calculate the value of any other ratios of that angle. Supplementary exercises should be given to students to consolidate the concept.
4. In Figure $9.1 \mathrm{~b}, \angle \mathrm{~A}$ and $\angle \mathrm{B}$ are called complementary angles. The teacher needs to introduce this term to students.
5. For more able student, the teacher can delete the column " $1 / \tan \theta$ " in Figure 9.2.
6. When using Microsoft Excel, students will obtain the notation "\#\#\#\#\#\#\#\#\#" as they evaluate the values of $\tan \theta$ for $\theta=90^{\circ}$ and $\tan \left(90^{\circ}-\theta\right)$ for $\theta=0^{\circ}$. The teacher needs to clarify its meaning with students. In the software, this notation represents an infinite number while in mathematical sense, we say that $\tan 90^{\circ}$ is undefined.
7. The teacher can use other software such as Graphmatica to let students understand the trigonometric identities visually.
For example: In order to investigate the identity $\cos \left(90^{\circ}-\theta\right)=\sin \theta$ graphically, the teacher can use the software Graphmatica to draw the graphs of $\mathrm{y}=\sin \mathrm{x}$ and y $=\cos \left(90^{\circ}-\mathrm{x}\right)$ for $0^{\circ} \leq \mathrm{x} \leq 90^{\circ}$. Students will find that the two graphs coincide with each other.
8. Suggested answers to worksheet 9.1:

Part I

Point 4 (a) As θ increases from 0° to 90°, the value of $\sin \theta$ increases from 0 to 1 .
(b) As θ increases from 0° to 90°, the value of $\cos \theta$ decreases from 1 to 0 .
(c) As θ increases from 0° to 90°, the value of $\tan \theta$ increases from 0 to infinity.
Point 5 (a) The relation is $\tan \theta=\frac{\sin \theta}{\cos \theta}$.
(b) The relation is $\sin ^{2} \theta+\cos ^{2} \theta=1$.

Use of

Excel
Point 7
(a) (i) $\sin \theta=\frac{b}{c}$
(ii) $\cos \theta=\frac{\mathrm{a}}{\mathrm{c}}$
(iii) $\tan \theta=\frac{\mathrm{b}}{\mathrm{a}}$.
(b) (i) $\frac{\sin \theta}{\cos \theta}=\frac{\mathrm{b}}{\mathrm{a}}$ (ii) $\frac{\sin \theta}{\cos \theta}=\tan \theta$.

Part II

Point $4 \quad \sin \left(90^{\circ}-\theta\right)=\cos \theta, \cos \left(90^{\circ}-\theta\right)=\sin \theta, \tan \left(90^{\circ}-\theta\right)=\frac{1}{\tan \theta}$.
Point 6 (a) $\mathrm{A}=90^{\circ}-\theta$.

$$
\begin{aligned}
& \sin A=\frac{a}{c}, \cos A=\frac{b}{c} \text { and } \tan A=\frac{a}{b} . \\
& \sin \left(90^{\circ}-\theta\right)=\frac{a}{c}, \cos \left(90^{\circ}-\theta\right)=\frac{b}{c} \text { and } \tan \left(90^{\circ}-\theta\right)=\frac{a}{b} .
\end{aligned}
$$

(b) $\sin \left(90^{\circ}-\theta\right)=\cos \theta, \cos \left(90^{\circ}-\theta\right)=\sin \theta, \tan \left(90^{\circ}-\theta\right)=\frac{1}{\tan \theta}$.

Use of

(I) Copy the symbol θ from a Word document into the cell A1:

1. Open a new Word document.
2. Select Insert tool from the Menu toolbar and choose Symbol.
3. Select Normal Text in the Font box and Basic Greek in the Subset box.
4. Click the symbol θ, press Insert and then press Close.
5. Copy the symbol θ.
6. Open a new Excel file. Click the cell A1 and then paste the symbol θ.
7. (In English Window NT 4.0 only) Change the font to Arial to display the symbol θ.
(II) Enter the term $\sin ^{2} \theta$ in the cell F1:
8. Select the cell F1 and then enter $\sin 2 \theta$.
9. Highlight the number ' 2 ' in $\sin 2 \theta$ and then select Format in the Menu toolbar.
10. Select Cells and click Superscript in the Special Effect box.
11. Press OK.
(III) Input values of θ in cell A 2 to A92:
12. Enter the value ' $\mathbf{0}$ ' in cell A 2 to set the initial value of θ at 0 .
13. Enter the formula ${ }^{\prime}=\mathrm{A} 2+1$ ' in cell A 3 to calculate the value of $\theta+1$.
14. Select cell A3. Go to the lower-right corner of cell A3. Drag the fill handle to cell A92 in order to copy the formula of A3 to cells A4 to A92.
(IV) Perform calculations in the activity:
15. To calculate the value of $\sin \theta$:
(a) Label cell B1 as $\sin \theta$.
(b) Select cell B2. Enter the formula $'=\sin (\mathrm{A} 2 * \mathrm{PI}() / 180)$ ' into cell B 2 to calculate the value of $\sin \theta$.
(c) Enter the formulas of $\cos \theta$ and $\tan \theta$ in cells C 2 and D 2 in a similar way.

Use of

Excel
2. To calculate the values of $\frac{\sin \theta}{\cos \theta}$ and $\sin ^{2} \theta$:
(a) Label cell E1 as $\sin \theta / \cos \theta$.
(b) Select cell E2. Enter the formula ' $=\mathrm{B} 2 / \mathrm{C} 2$ ' into cell E 2 to calculate the value of $\frac{\sin \theta}{\cos \theta}$.

Then press Enter.
(c) Label cell F1 as $\sin ^{2} \theta$.
(d) Select cell F2. Enter the formula ${ }^{\prime}=B 2{ }^{\wedge} 2^{\prime}$ into cell F2 to calculate the value of $\sin ^{2} \theta$. Then press Enter.
(e) Enter the formulas of $\cos ^{2} \theta, \sin ^{2} \theta+\cos ^{2} \theta, 90^{\circ}-\theta, \sin \left(90^{\circ}-\theta\right)$, $\cos \left(90^{\circ}-\theta\right), \tan \left(90^{\circ}-\theta\right)$ and $1 / \tan \theta$ in a similar way.
(V) To investigate the trigonometric identities graphically by using Graphmatica:

1. An evaluation version of Graphmatica can be downloaded at http://www8.pair.com/ksoft/.
2. Select View | Grid Range.
3. Enter the following data in the Grid Range Dialogue Box:

Left : $\mathbf{0}$	Right : 90
Bottom : - $\mathbf{1 . 5}$	Top : $\mathbf{1 . 5}$

Then press OK.
4. Select Labels | Legends.
5. In the Axis Legends Dialogue Box, click Custom Spacing and enter 10 in the box of the x-axis. Then press $\mathbf{O K}$.
6. Enter the equation $\mathbf{y}=\sin (\mathbf{x} \mathbf{d})$ in the dialogue box below the icon bar to draw the graph of $y=\sin x$.

Enter the equation $\mathbf{y}=\boldsymbol{\operatorname { c o s }}(\mathbf{(9 0 - \mathbf { x })} \mathbf{d})$ in the dialogue box to draw the graph of $y=\cos \left(90^{\circ}-x\right)$ and then press Enter.
7. Select View | Colors to change the colours of the curve and background.

