單元 5:極限和微分

特定目標:

- 1. 學習極限的概念。
- 2. 計算函數的極限。
- 3. 求函數的導數。
- 4 利用微分法的技巧解數學問題。

			內容	時間 分配						教學?	建議				
36	5.1	極限		5 6	時 f(x). 函數在 lim f x→x ₀ 時簡易	所趨近 $x = x_0$ (x) 和 $有理逐$ $(x) = \frac{x}{x}$	的數值 時是週 $\lim_{h\to 0} f(h)$ 的數的框 $\frac{2}{x-2}$ 的	i。教師 i 續的 , x + h) (極限。 7 均圖像 i	可指出 但不需等符號 下應介紹 並考慮	出函數 指索對函數 ,並應和 紹一些 : 當 x 趨	数 f(x)在 x ₀ th f(x)在 x = x ₀ 数的連續性化 型學生討論簡繁 如下的例題以 向 2 時 f(x) 像:	時的極 F嚴謹的 易代數函 以便澄》	旗限是 fe 的處理。 數的極	(x ₀)當且 教師歷 限和趨	且僅當 應介紹 向無窮
					f(x)	2	3	3.9	3.99	3.999	未下定義	4.001	4.01	4.1	5

內容	時間 分配	教 學 建 議
		$y = \frac{x^2 - 4}{x - 2}$

37

當 x 越來越接近 2 時 , f(x) 越來越接近 4 並記為

$$\lim_{x \to 2} f(x) = 4$$

或
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$$

除了(2 , 4)一點外 ,很明顯 , $f(x)=\frac{x^2-4}{x-2}$ 的圖像是和 y=x+2 一樣的。當 x 從兩方面迫近 2 時 ,可記作

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 4$$

但教師應強調 f(x)在 x=2 時是沒有定義的。

內 容	時間分配	教 學 建 議
38		例二 試求 $\lim_{x\to 2} x^2$ 。 由於函數 $f(x) = x^2$ 在 $x = 2$ 時是連續的 ,所以極限等如 $f(2)$ 。 $\lim_{x\to 2} x^2 = 2^2 = 4$ 。 教師可用圖像和數字說明。 例三 試求 $\lim_{x\to 8} \frac{x-8}{\sqrt{x+1}-3}$ 。 教師應提醒學生把根式有理化的技巧: $\frac{x-8}{\sqrt{x+1}-3} = \frac{(x-8)(\sqrt{x+1}+3)}{(\sqrt{x+1}-3)(\sqrt{x+1}+3)}$ $= \frac{(x-8)(\sqrt{x+1}+3)}{(x+1)-9}$ $= \sqrt{x+1}+3$ 由此 $\lim_{x\to 8} \frac{x-8}{\sqrt{x+1}-3} = \lim_{x\to 8} (\sqrt{x+1}+3) = 6$ 學生應知道 $\frac{x-8}{\sqrt{x+1}-3}$ 在 $x=8$ 時是沒有定義的。 例四 考慮當 x 趨向無窮大時 $f(x)$ 。 教師可介紹記號 $\lim_{x\to \infty} f(x)$ 。
內 容	時間分配	教 學 建 議
39		學生應能列出下表和描繪 $\frac{1}{x}$ 的圖像。

	內容	時間	教學建議
40	內容	分配	$(c) \lim_{x \to x_0} [c \cdot f(x)] = c \cdot \lim_{x \to x_0} f(x) \text{ , } \\ \downarrow \text{ im } f(x) \\ \downarrow \text{ im } f($
	內容	時間 分配 -4- 5	例題和習作可包括 $\frac{\sin 3\theta}{2\theta}$ 、 $\frac{\tan \theta}{2\theta}$ 、 $\frac{1-\cos \theta}{\theta^2}$ 和 $\frac{\sin m\theta}{\sin n\theta}$ 其中 m n 為常數。
			義為 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ 。 教師應介紹導數的常用記號例如 $f'(x)$ 、 $\frac{dy}{dx}$ 、 y' 、 $\frac{d[f(x)]}{dx}$ 和 $\frac{d}{dx}[f(x)]$ 等、並應強調 $\frac{dy}{dx}$ 是一個記號而不應視為一個分數。 教師應舉例說明如何從基本原理求導數。 例題應包括簡單的多項式和 $\frac{1}{ax+b}$ 、 $\frac{ax+b}{cx+d}$ 、 $\sqrt{ax+b}$ 及 $\frac{ax+b}{\sqrt{cx+d}}$ 其中 a、b、c、d 為常數的代數式。至於三角函數的處理方法則可留待介紹了微分法的法則後才作討論。
41	5.3 微分法 5.3.1 簡單代數函數和微分法的法則	5	教師可導出下列微分法的法則,其中 c 為一常數而 u、 v 是 x 的函數。 1. $\frac{dc}{dx} = 0$ 2. $\frac{d}{dx}[x^n] = nx^{n-1}$ 其中 n 為一整數(冪規律) 注意: 教師可介紹和利用 n 為正整數的冪規律 $\frac{d}{dx}[x^n] = nx^{n-1}$ 而無需証明,但當 n 是一個整數(包括正數和負數)的情況則宜在介紹了商法則之後才作討論。 3. $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$ 4. $\frac{d}{dx}[u+v] = \frac{du}{dx} + \frac{dv}{dx}$ 5. $\frac{d}{dx}[u\cdot v] = u\frac{dv}{dx} + v\frac{du}{dx}$ (積法則)

	內 容	時間 分配	教 學 建 議
-			6. $\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} $ (商法則)
			教師宜先用多項式作例題,示範如何微分一個常數、x的乘冪和x的乘冪之。
			線性組合等。當學生已熟識了 $n=0,1,2$, 的冪規律 $\frac{d}{dx}[x^n]=nx^{n-1}$,他們已可以把一個多項式逐項微分。當確定了微分函數的和、積和商的法則之後,學生便
			可以微分多項式的積和有理函數,例如 $(2x+3)(4x^2+5)$ 和 $\frac{1-2x^2}{2+3x}$ 等。
			下列的例題亦適用:
42			n 為一正整數,試從基本原理求 x" 的導數。 例二
			已知若 n 為一正整數時 $\frac{d[x^n]}{dx} = nx^{n-1}$, 同時若 $f(x) \neq 0$
			$\boxed{\parallel \frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{1}{\mathrm{f}(x)} \right] = \frac{-\frac{\mathrm{d}}{\mathrm{d}x} [\mathrm{f}(x)]}{[\mathrm{f}(x)]^2}} .$
			証明對所有整數 , $\frac{d[x^n]}{dx} = nx^{n-1}$ 正確。
	5.3.2 複合函數和隱函數的微分	-4 6	教師應介紹一些複合函數、隱函數和反函數的例子。
		6	教師然後應介紹鏈式法則:
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$
			其中 y 是 u 的函數及 u 是 x 的函數。
-	內容	時間 分配	教學建議
_			鏈式法則是可以用來微分複合函數、隱函數和反函數的。教師應介紹多兩個 有用的公式
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}u}}{\mathrm{d}x}$
			$\frac{dy}{dx} = \frac{\frac{dy}{du}}{\frac{dx}{du}}$
			du
			$\mathcal{B} \qquad \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}$
			ΔU
43			$ D = \frac{du}{dy} = \frac{1}{\frac{dy}{dx}} $ $ ie $
43			$\Delta = \frac{du}{dy} = \frac{1}{\frac{dy}{dx}}$ $ = \frac{1}{\frac{dy}{dx}} $ 這些公式不需要嚴謹的証明但要有充足的應用題。教師可以用鏈式法則來証 明當 n 是一有理數時 $\frac{d}{dx}[x^n] = nx^{n-1}$ 亦成立。在現階段學生應能運用微分的法
43			$ \begin{array}{c} du \\ D & \dfrac{dx}{dy} = \dfrac{1}{\dfrac{dy}{dx}} \\ & = \dfrac{1}{\dfrac{dx}} \\ & = \dfrac{1}{\dfrac{dx}} \\ & = $
43			$\frac{du}{dy} = \frac{1}{\frac{dy}{dx}}$ 這些公式不需要嚴謹的証明但要有充足的應用題。教師可以用鏈式法則來証 明當 n 是一有理數時 $\frac{d}{dx}[x^n] = nx^{n-1}$ 亦成立。在現階段學生應能運用微分的法 則於包括有理指數的代數式,例如 $(3x^2+4)^{\frac{5}{2}}$ 或 $x(2x-3)^{-\frac{3}{2}}$ 等。教師可利用 曲線的標準方程或參數方程作為例題和習題。
43			$ \begin{array}{c} du \\ \overline{dy} = \dfrac{1}{\dfrac{dy}{dx}} \\ & \text{ise} \triangle x \text{ ise} \triangle x can be made of the model of $
43			$\frac{du}{dy} = \frac{1}{\frac{dy}{dx}}$ 這些公式不需要嚴謹的証明但要有充足的應用題。教師可以用鏈式法則來証 明當 n 是一有理數時 $\frac{d}{dx}[x^n] = nx^{n-1}$ 亦成立。在現階段學生應能運用微分的法 則於包括有理指數的代數式,例如 $(3x^2+4)^{\frac{5}{2}}$ 或 $x(2x-3)^{-\frac{3}{2}}$ 等。教師可利用 曲線的標準方程或參數方程作為例題和習題。

內容	時間 分配	教 學 建 議
		$\begin{cases} x = t^2 \\ y = 2t \end{cases}$
		$\Re \frac{\mathrm{d}y}{\mathrm{d}x}$.
		學生應能運用 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{dy}{dt} \cdot \frac{1}{\frac{dx}{dx}}$ 。
		dt 例三
		求函數 $x^2 + y^2 = 25$ 的 $\frac{dy}{dx}$ 在點 (3, 4) 處的值。
		教師可把結果用圖解說明。 <i>例四</i>
4		已知當 n 為任何整數時 $\frac{d}{dx}[x^n] = nx^{n-1}$ 。
		証明當 $m = \frac{p}{q}$, 其中 p、q 為整數且 $q > 0$, $\frac{d}{dx}[x^n] = nx^{n-1}$ 。
		設 $y = x^n = x^{\frac{p}{q}}$,則 $y^q = x^p$
		在方程兩邊同時對 x 求導數:
		$qy^{q-1}\frac{dy}{dx} = px^{p-1}$
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{p}{q}\right) \cdot \frac{x^{p-1}}{y^{q-1}}$
		$= \left(\frac{\mathbf{p}}{\mathbf{q}}\right) \cdot \mathbf{x}^{\frac{\mathbf{p}}{\mathbf{q}} - 1}$
		由此,可知當 n 是一有理數時, $\frac{d}{dx}[x^n] = nx^{n-1}$ 亦成立。
	·	
內 容	時間分配	教學建議
內 容 5.3.3 <i>三角函數的微分</i>		在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複 角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。sin x 的導
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複 角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。sin x 的導 數是可以如下推出:
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限,複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。sin x 的導數是可以如下推出:
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。sin x 的導數是可以如下推出:
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$
5.3.3 三角函數的微分	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數:
	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數: $\frac{d}{dx}[\cos x] = \frac{d}{dx}\left[\sin\left(\frac{\pi}{2} - x\right)\right]$
5.3.3 三角函數的微分	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數: $\frac{d}{dx}[\cos x] = \frac{d}{dx}\left[\sin\left(\frac{\pi}{2} - x\right)\right]$ $= -\cos\left(\frac{\pi}{2} - x\right)$
5.3.3 三角函數的微分	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數: $\frac{d}{dx}[\cos x] = \frac{d}{dx}\left[\sin\left(\frac{\pi}{2} - x\right)\right]$
5.3.3 三角函數的微分	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \frac{2\cos(x+\frac{h}{2}) \cdot \sin(\frac{h}{2})}{h}$ $= \lim_{h \to 0} \cos\left(x+\frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數: $\frac{d}{dx}[\cos x] = \frac{d}{dx}\left[\sin\left(\frac{\pi}{2} - x\right)\right]$ $= -\cos\left(\frac{\pi}{2} - x\right)$ $= -\sin x$ 教師可讓學生微分 $\tan x$ 、 $\cot x$ 、 $\sec x$ 和 $\csc x$ 而得出下列的結果: $\frac{d}{dx}[\tan x] = \sec^2 x$
5.3.3 三角函數的微分	分配	在推出六個三角函數的導數之前,教師應先替學生溫習三角函數的極限、複角公式或和積互變公式等。更應時常提醒學生所有角是以弧度為單位。 $\sin x$ 的導數是可以如下推出: $\frac{d}{dx}[\sin x] = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$ $= \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right) \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$ $= \cos x \cdot 1$ $= \cos x$ 其它三角函數的導數是可以由基本原理推出,亦可以利用以上的公式和導數公式推出來,下列表示如何求 $\cos x$ 的導數: $\frac{d}{dx}[\cos x] = \frac{d}{dx}\left[\sin\left(\frac{\pi}{2} - x\right)\right]$ $= -\cos\left(\frac{\pi}{2} - x\right)$ $= -\sin x$ 教師可讓學生微分 $\tan x$, $\cot x$, $\sec x$ 和 $\csc x$ 而得出下列的結果:

	內容	時間 分配	教 學 建 議
	<i>二階</i> 5.3.4 <i>高階導數</i>	3 2	$\frac{d}{dx}[cosec\ x] = -cosec\ x\ cot\ x$ 教師應提供足夠的例題和練習來幫助學生應用上述的公式及其它導數的公式在簡易代數和三角函數中,但是,反三角函數之微分並不須要。 二階 高階導數是可以由一階導數 微分獲得。已知一函數 $y=f(x)$ 可微分得其 一階導數 $y'=\frac{dy}{dx}=f'(x)$,則 $f'(x)$ 的導數稱為二階導數並以 $y''=\frac{d^2y}{dx^2}=f'(x)=\frac{d}{dx}\left[\frac{dy}{dx}\right]$ 為記號。
46	5.4 微分的應用 5.4.1 <i>曲線的斜率、切線及法線</i>	-4 5	可介紹下列的例題: 例一 已知 $x=a\sin(wt+k)$,其中 a ,w 和 k 為常數,証明 $\frac{d^2x}{dt^2}=-w^2x$ 。 例二 設 $f(\theta)=\sqrt{\theta^2+k}\sin 2\theta$,其中 k 為常數。若 $f'(0)=1$,求 k 的值。 例三 若 $y=a\sin x+\cos x$ 滿足方程 $\frac{d^2y}{dx^2}+y=b$,其中 a 、 b 為常數,且當 $t=0$ 時, $\frac{dy}{dx}=2$,求 a 、 b 的值。
		時間	教學建議
47		分配	教師可以利用一些簡單圖像,如 $y=x^2$ 、 $y=\frac{1}{x}$ 或 $x^2+y^2=25$ 等作切線以說明。 例一 考慮曲線 $y=x^2$ 在 $x=2$ 的切線。 在曲線 $x=2$ 之處繪畫一良好切線,其斜率是 4。 教師應重申導函數在 $x=2$ 時的值是可以由基本原理計出:

		時間	the CCI THE AM-
	內 容	分配	教 學 建 議
48			例二 考慮在圖像 $y=\frac{1}{x}$ 上的切線。 從 $y=\frac{1}{x}$ 的圖像中可以看出在 $x=2$ 處的切線的斜率,其結果可以利用微分法驗 証: $\left(\frac{dy}{dx}\right)_{x=2}=-\frac{1}{x^2}$
		時間 分配	教 學 建 議
49	5.4.2 極大及極小、簡易曲線的描繪	5 7	當學生明瞭事實後,他們應能求得簡單曲線的切線和法線。 在此課程,相對極值和絕對極值(最大/最小值)都應考慮。學生亦應可分辨相對和絕對極值。 教師應引導學生接受下列事實: (i) 若 $f'(x_1) > 0$,則該函數在 x_1 處是遞增的; (ii) 若 $f'(x_1) < 0$,則該函數在 x_1 處是遞減的; (iii) 若 $f'(x_1) < 0$,則該函數在 x_1 處是遞減的; (iii) 若 $f'(x_1) < 0$,則該函數在 x_1 處為一平穩點。 學生應清楚知道若 $f'(x_1) = 0$ 且當 x 遞增經 x_1 時, $f'(x)$ 的值由正變負,則 $f(x)$ 在 x_1 處為一相對極大值。若 $f'(x_1) = 0$ 且當 x 遞增經 x_2 時, $f'(x)$ 的值由負變 正,則 $f(x)$ 在 x_1 處為一相對極小值。若 $f'(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x_1) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 在 $f(x) = 0$ 而且 $f''(x_1) < 0$,則 $f(x)$ 和 $f(x)$

-			
<u>-</u>	內容	時間 分配	教 學 建 議
50			師應強調一階及二階導數皆可用來試驗極點,但是,如果求一階導數的導數過於困難的話,以一階導數試點較為容易。 學生應注意到若某函數的定義域包含一端點,則該函數可能在該端點達致極值。 函數的一階導數提供了一個方法去求函數的轉向點(極大或極小)和函數是遞增的或遞減的區間。衹要描繪了具有關連性的幾點便可以決定函數曲線的形狀。例如,描繪曲線 y = (x - 1)²(x + 1) 在 -2 ≤ x ≤ 2 區間內,教師應引導學生求曲線與兩軸的交點和當
-	內容	時間	 教學建議
51	5.4.3 變率	<u>2</u> 3	教師應提醒學生將圖像適當地註釋。可讓學生描繪的曲線包括 $y=\frac{x^2-2x+1}{x^2+2}$ 和 $y=\frac{4x-2}{x^2+4}$ 等。對較高能力的學生,教師可和他們討論拐點和漸近線。 若 x 為一時間 t 的函數,則其導數 $\frac{dx}{dt}$ 為 x 對時間 t 的變率。速度和加速度是變率的好例子。有關變率的問題亦應討論。以下為兩個有關的例題。 例一 一 倒置 圓錐形的漏斗底半徑為 $30~{\rm cm}$,高為 $40~{\rm cm}$ 。水從漏斗的底部以 ${\rm rcm}^3 {\rm s}^{-1}$ 的速率流出。當水深為 $20~{\rm cm}$ 時,求水面的下降速率。 例二 一身高 $2~{\rm m}$ 的人以 $2~{\rm ms}^{-1}$ 的速率沿著一直路背著一高 $6~{\rm m}$ 的燈而行。求此人影子增長的變率。

-	時間 分配	教 學 建 議
52		
	-36- 44	

單元 6:不等式

特定目標:

- 1. 理解不等式的基本法則。
- 2. 解一元一次不等式。
- 3. 解一元二次不等式。

53	內 容		教 學 建 議
	6.1 不等式的基本法則	1*	教師宜強調若 a-b 是一個正數,則 a>b,而且它的逆定理亦成立。利用這個事實,可導出下列的基本法則。 對實數 a、b、c:
			(1) 若 a > b , 且 b > c , 則 a > c。 (2) 則 a > b , 則 a + c > b + c。 (3) 則 a > b , 則 (a) ac > bc 若 c > 0。 (b) ac < bc 若 c < 0。 (c) ac = bc 若 c = 0。
	6.2 一元一次不等式	-1* 1*+1	利用基本法則來證明不等式的簡單問題亦須介紹。 教師宜提示學生解線性不等式的方法和解線性方程的方法很類似。唯一的分別是當一條不等式被乘或除以一個負數時,則不等號須反向。