單元 6: 微分法

特定目標:

1. 掌握微分法的一般技巧。

	課程內容	時間分配	教學建議
6.1	基本微分法法則	4	教學範圍應包括下列法則,為求完整起見,教師亦可提供法則的証明。
			(a) $\frac{d}{dx}k=0$, k 為常數
			(b) $\frac{d}{dx}x^n = nx^{n-1}$
			(c) $\frac{d}{dx}kf(x) = k\frac{d}{dx}f(x)$
S			(d) $\frac{d}{dx}[f(x)\pm g(x)] = \frac{d}{dx}f(x)\pm \frac{d}{dx}g(x)$
			(e) $\frac{d}{dx}f(x)g(x) = g(x) \cdot \frac{d}{dx}f(x) + f(x) \cdot \frac{d}{dx}g(x)$
			(f) $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \cdot \frac{d}{dx}f(x) - f(x) \cdot \frac{d}{dx}g(x)}{g^2(x)}, g(x) \neq 0$
6.2	複合函數和反函數的微分法	4	教學方面宣強調鏈法則用於複合函數的求導,而反函數的求導可看待為複合函數的特例來求導。至於公式
			dy dy dy dy 1
			$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \not b \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$
			\overline{dy}
			的嚴格証明則可毋須深究,惟應羅列充分的應用題以作示範。有關簡單隱函數的微分法亦
			在本課程內,而參數方程之微分法則不包括在內。

課程內容		時間分配	教學建議
6.3	e ^x 和 In x 的微分法	5	$\frac{d e^x}{dx} = e^x 法則的証明可透過假設對無窮級數 e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots$ 兩
			側逐項求導的可行性引出。 $\ln x$ 之導數可視為 e^x 之反函數的導數。另外當 y 是 x 的較複雜的商數,尤其是當指數涉及變數時,用對數微分法 (即兩邊取對數後求導數) 去求導數會較為容易。學生應掌握下列法則的運用;
			(a) $\frac{d}{dx}(\ln x) = \frac{1}{x}$
			(b) $\frac{d}{dx}(a^x) = a^x \ln a$
			(c) $\frac{d}{dx}\log_a x = \frac{\ln a}{x}$
			此外,函數如 x^x , e^{x^2} 和 $\log_a \sqrt{x+1}$ 類形的微分法亦應包括在內。
6.4	二階導數	2	學生應明白符號 $f''(x)$ 和 $\frac{d^2y}{dx^2}$ 的意義、至於其他高階導數則可不予討論。
		15	