單元B5:積分法

特定目標:

- (1) 理解積分作爲極限和的概念。
- (2) 學習有關積分的性質。
- (3) 理解積分基本定理。
- (4) 運用積分基本定理於積分的求值。 (5) 學習一些求積分的方法。
- (6) 掌握廣義積分的基本概念。

	內容	時間 分配	教學建議
5.1 70	黎曼積分的定義	5	有關定積分的理論可由兩相異的途徑表達:其一爲透過幾何直觀的進路,此外亦可 採用純分析的進路,前者需倚賴幾何的面積概念,而後者則引用定積分作爲一代數和的 極限的概念而無需引用幾何概念。教師宜按學生所需決定其取向及施教次序。以下乃一 簡化的説法以供參考:
			在區間 [a,b] 內,設 f(x)≥0 及其圖像爲有限和連續。
			用點 x_0 $\cdot x_1$ $\cdot x_2$ \cdot $\cdot x_n$ 將 $[a,b]$ 分成 n 個子區間其中 $a=x_0 < x_1 < x_2 < < x_{n-1} < x_n = b$,同時設 x_i-x_{i-1} 記爲 Δ x_i 及 ξ_i 爲在 $[x_{i-1},x_i]$ 內任一點。由曲綫 $y=f(x)$ 、直綫 $x=a$ 及 $x=b$

內容	時間 分配	教學建議
		和 $x-$ 軸所包圍的區域的面積約爲總和 $\sum_{i=1}^n f(\xi_i)\Delta x_i$ 。此外,當 n 增加而 $\max\left(\Delta x_i\right)\to 0$,可求此面積的值而此總和的極限則定義爲 $f(x)$ 由 $x=a$ 到 $x=b$ 的定積分並記爲 $\int_a^b f(x)dx , \text{即} \int_a^b f(x)dx = \lim_{\substack{n\to\infty\\ \max(\Delta x_i)\to 0}} \sum_{i=1}^n f(\xi_i)\Delta x_i$ 其中記號 $f(x)$ 稱爲被積函數: $a \text{稱爲下限};$ $b \text{稱爲上限而此總和則稱爲黎曼和。}$ 教師和學生討論時,應強調下列各點: $(1) [a\ ,b] \text{是任意分割成子區間的};$ $(2) \xi_i \in [x_{i-1}\ ,x_i]$ 是任意的; $(3) \text{將定積分定義爲總和的極限已先假設} a < b \circ 當 a > b 其值定義爲$ $\int_a^b f(x)dx = -\int_b^a f(x)dx$
		而當 $a=b$ 時, $\int_a^a f(x) dx = 0$ (注:若定積分是利用函數 $F(x)$ 作定義的,則這些結果可 視爲定理;則 $F(b)-F(a)=-[F(a)-F(b)]$ 及 $F(a)-F(b)=0$ 教師應示範例題並加以説明以幫助學生充分明白。以下的例題可作參考。例一 $\int_a^b e^x dx$ 若使用相等的區間 $\Delta x_i = \frac{b-a}{n} = h(設)$,則 $x_0=a$, $x_1=a+h$, , $x_{i-1}=a+(i-1)h$ 。

設 ξ_i 爲 $~x_{i-1}$,即 $~\xi_i = a + (i-1)\,h \circ~$ 由於 $~max~\Delta x_i = \Delta x_i = h~$,

時間 分配	教學建議
	$\int_{a}^{b} e^{x} dx = \lim_{h \to 0} \sum_{i=1}^{n} e^{\frac{z}{h}} i h = \lim_{h \to 0} \sum_{i=1}^{n} e^{a+(i-1)h} h = \lim_{h \to 0} he^{a} \sum_{i=1}^{n} e^{(i-1)h}$ $= \lim_{h \to 0} he^{a} \frac{(e^{ah} - 1)}{(e^{h} - 1)} = \lim_{h \to 0} he^{a} \frac{(e^{b-a} - 1)}{(e^{h} - 1)} = \lim_{h \to 0} h \frac{(e^{b} - e^{a})}{(e^{h} - 1)}$ $= (e^{b} - e^{a}) \lim_{h \to 0} \frac{h}{(e^{h} - 1)} = (e^{b} - e^{a}) \lim_{h \to 0} \frac{1}{e^{h}} = e^{b} - e^{a}$
時間	= (b ^{m+1} - a ^{m+1})·lim 1 (m+1)r ^m 教學建議
4 4	$=\frac{b^{m+1}-a^{m+1}}{m+1}$ 其後,教師仍須詳述下列各點: (1) 若f(x)在[a,b]是連續的,則f(x)在[a,b] 爲可積的; (2) 若f(x)在[a,b]是有界的和單調的,則f(x)在 [a,b]是可積的。 教師可幫助學生從定義推導下列結果: (1) $\int_a^b kf(x)dx=k\int_a^b f(x)dx$,其中k爲常數。 (2) $\int_a^b f(x)dx+\int_a^b g(x)dx=\int_a^b [f(x)+g(x)]dx$ 。 (3) $\int_a^b f(x)dx=\int_a^c f(x)dx+\int_c^b f(x)dx$ 而c是在區間 [a,b] 內或外任一點。 (4) 若在[a,b],對應於所有x的值,f(x) ≥ g(x),則 $\int_a^b f(x)dx \ge \int_a^b g(x)dx$ 。 (5) 若在[a,b],對應於所有x的值, $ f(x) \le \phi(x)$,
	分配 間配

	時間 分配	教學建議
5.3 積分中値定理	2	(2) $\left \frac{1}{n}\int_{0}^{1}\frac{\sin nx}{1+x^{2}}dx\right \leq \frac{\pi}{4n}$ 。 此定理宜以一簡化的形式表達,即如: 若 $f(x)$ 在 $[a,b]$ 是連續的,則在 (a,b) 中存在一數 ξ ,而且 $\int_{a}^{b}f(x)dx = f(\xi)\cdot(b-a)$
		從附圖中可容易看出要傳達的概念。學生應不難明白 $f(\xi)(b-a)$ 原來的意義就是矩形 $ABCD$ 的面積。
74		$f(\xi)$ D C

如果想要一較形式化的證明,則可以用 5.2 所提及的性質和連續函數的性質,而其中 特別可用介值定理。

內容	時間 分配	教學建議
5.4 積分基本定理及其於計算積分的應用	4	積分的第一基本定理如下: 設 $f(x)$ 在 $[a,b]$ 是連續的及 設 $F(x)$ 的定義爲 $F(x) = \int_a^x f(t) dt$,其中 $a \le x \le b$, 則 (i) $F(x)$ 在 $[a,b]$ 是連續的 (ii) $F(x)$ 在 $[a,b]$ 是連續的 (ii) $F(x)$ 在 $[a,b]$ 是可微的和 $\frac{d}{dx}F(x)=f(x)$ 。 亦可以簡化的形式如下 : 若 $f(x)$ 是連續的,則函數 $F(x) = \int_a^x f(t) dt$ 是可微的且其導數相等於被積函數是在積分上限時的數值,即 $F'(x) = f(x)$ 。 教師應和學生詳細討論而學生可在教師指導之下引用積分的中值定理來證明此定 理。 (註:教師應在教授此定理之後立即詳述下列各點: (1) 若一函數 $F(x)$ 的導數與被積函數 $f(x)$ 是相等的,則 $F(x)$ 被稱爲 $f(x)$ 的原函數。 (2) 若同一被積函數的兩個原函數爲 $F(x)$ 和 $G(x)$,則 $F(x) - G(x)$ 的導數是恒等抗零的,因此 $F(x) - G(x)$ 是常數。) 至於積分的第二基本定理,教師亦可以同樣手法幫助學生導出。可考慮下列的方式: 設 $f(x)$ 和 $F(x)$ 在 $[a,b]$ 是連續的; 若對於 $a < x < b$,

	時間 分配	教學建議
		教師應示範一些有啓發性的例題以增強學生對上述定理的全面理解。在計算定積分時一方面將其視為一無限的總和而另一方面可求有關的原函數作為另一方法。由此可以 提高學生對利用微分的逆運算來計算積分的認識。
		教師可先用簡單的例題如 $\int_a^b x^2 dx = \frac{b^3}{3} - \frac{a^3}{3}$
		而最後用其他有趣的應用題如下:
		(1) 若考慮 $f(x) = \frac{1}{x}$ 在區間 $[1, 2]$,則可以建立以下的結果
		$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \to \ln 2 \stackrel{\text{def}}{=} n \to \infty,$
76		(2) 若考慮 $f(x) = \frac{1}{1+x^2}$ 在 $(0,1)$,則可以證明當 $n \to \infty$ 時, $n \sum_{r=2}^{n} \frac{1}{r^2+n^2} = \frac{\pi}{4}$ 。
5.5 不定積分法	6	作爲上述的延續,學生應將注意力集中在求原函數的機械程式作爲計算定積分的另一方法。代表 $f(x)$ 的不定積分的記號 $\int f(x) dx$ 應介紹如下:
		若 $\frac{dF(x)}{dx} = f(x)$ 成立,則稱 $F(x)$ 爲 $f(x)$ 的不定積分,且記爲 $F(x) = \int f(x) dx$ 。
		教師亦應指出 $f(x)$ 的不定積分不是唯一的及若 $F(x)$ 是 $f(x)$ 的一個不定積分,則 $F(x)$ +c (其中 c 是一常數)是另一個,而以 $\int f(x) dx$ 作爲 $f(x)$ 的原函數。
		學生應能夠運用下列公式求不定積分,事實上,教師可鼓勵學生導出部分或全部公式。
		(1) $\int x^{n} dx = \frac{x^{n+1}}{n+1} + c , n \neq -1$
	1	

內容	時間 分配	教學建議
		$(2) \int \frac{\mathrm{d}x}{x} = \ln(x) + c$
		$(3) \int e^x dx = e^x + c$
		(4) $\int a^x dx = a^x \ell na + c$ (5) $\int \sin x dx = -\cos x + c$
		$(6) \int \cos x dx = \sin x + c$
		(7) $\int \sec x \tan x dx = \sec x + c$
		(8) $\int \sec^2 x dx = \tan x + c$ (9) $\int \csc x \cot x dx = -\csc x + c$
		(10) $\int \csc^2 x dx = -\cot x + c$
		(11) $\int \tan x dx = \ln \sec x + c$
		$(12) \int \cot x dx = \ln \sin x + c$
		(13) $\int \frac{dx}{1+x^2} = \tan^{-1} x + c$
		(14) $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x + c$

內容	時間 分配	教學建議
5.6 求積分的方法 (A) 代換法	8	教師亦可提醒學生以下性質: $(1) \int kf(x)dx = k\int f(x)dx , \\ \ \text{其中k是} - 常數$ $(2) \int \left[f(x) + g(x)\right]dx = \int f(x)dx , \\ \ \text{應鼓勵學生對各樣的不定積分做足夠的練習。因此可測試他們已掌握了基本運算,而可以順利學習其後的技巧。}$

內容	時間 分配	教學建議
		(5) $\int \frac{\mathrm{d}x}{\sqrt{(x-a)(b-x)}} \not\equiv +b > a \left(\exists x = a\cos^2\theta + b\sin^2\theta \right)$
		(6) $\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} dx \left(\frac{dn}{dx} \right) x = \tan \theta$
		教師亦應和學生討論下列有用的結果,並舉實例説明:
		(1)
		(2) 若 f(x) = f(a - x) ,則 $\int_0^a xf(x) dx = \frac{a}{2} \int_0^a f(x) dx$
		而其中 $\int_0^{\pi} xf(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$
70		(3) 若 $f(x)$ 是一週期 w 的週期函數,則 $\int_a^{a+w} f(x) dx = \int_0^w f(x) dx$
		(4) 若 $f(x)$ 是一偶函數,則 $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$
		(5) 若 $f(x)$ 是一奇函數,則 $\int_{-a}^{a} f(x) dx = 0$
		(6) $\int_0^{\frac{\pi}{2}} f(\cos x) dx = \int_0^{\frac{\pi}{2}} f(\sin x) dx = \frac{1}{2} \int_0^{\pi} f(\sin x) dx$
		可考慮下列有關的例題:
		$(1) \qquad \int_0^\pi \frac{\cos^3 x}{\sin x + \cos x} \mathrm{d}x$
	I	69 表示刪去的內容

內容 	時間 分配	教學建議
80 (B) 分部積分法	3	$(2) \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$ $(3) \ $

內容	時間 分配	教學建議
<u>«</u>		圖中提供上述公式一個非形式化的幾何解釋: $\int vdu 代表區域 A 的面積;$ $uv 代表 OPQR 的面積而由此可得出上述公式。$ 應用具代表性的例題作説明時可包括 $\int xe^x dx \cdot \int x \sin x dx 和 \int \ell n x dx \circ$ 學生混合使用代換法和分部積分的公式,就可以處理很多種類的積分,例如: $(1) \int e^{ax} \cos bx dx$ $(2) \int tan^{-1} x \ell n (1+x^2) dx$ $(3) \int (\frac{1}{x} + \frac{1}{x^2}) \ell n x dx$ $(4) \int_0^1 \sin^{-1} x dx$ $(5) \int_0^1 x tan^{-1} x dx$ $(6) \int_0^{\frac{\pi}{2}} \frac{x \cos x \sin x dx}{(a^2 \cos^2 x + b^2 \sin^2 x)^2}$
	I I	70 表示删去的內容

內容	時間 分配	教學建議
(C) 歸約公式	5	歸約公式是用一組函數中較簡單的函數的積分來表達函數組中任一函數的積分。歸 約公式通常是利用分部積分的方法求得。在三角函數的積分中此法被廣泛利用。可考慮 下列具代表性的例題:
		(1) 設 $\int_0^{\overline{4}} \tan^n x dx$ 可記為 I_n ,證明 $I_n = \frac{1}{n-1} - I_{n-2}$, $n \ge 2$ 。由此計算 I_4 的值。 (2) 設 $I_n = \int \frac{dx}{(x^2 + a^2)^n}$,求 I_n 的歸約公式,然後計算 $\int_0^a \frac{dx}{(x^2 + a^2)^3}$ 的值。
		(3) 若 $I_n = \int x^n e^{x^2} dx$,證明對 $n > 2$, $I_n = \frac{1}{2} x^{n-1} e^{x^2} - \frac{1}{2} (n-1) I_{n-2}$ 。
(D) 利用部分分數計算積分 8	4	有理代數函數的積分是可先將數式分解成部分分數後完成,一般有四類分式: $\int \frac{L dx}{ax+b} \cdot \int \frac{L dx}{(ax+b)^r} \cdot \int \frac{Lx+M}{(ax^2+bx+c)} dx \pi \int \frac{Lx+M}{(ax^2+bx+c)^r} dx \circ$
		學生處理前三類的分式應沒有特別的困難,但若遇到最後那類分式時,則須要應用 歸約公式了。
		以下是一些可作討論的例題: (1) $\int_{-1}^{1} \sqrt{\frac{x+3}{x+1}} dx$
		$(1) \int_{-1} \sqrt{\frac{x}{x+1}} dx$ $(2) \int \left(\frac{x}{x^2 - 3x + 2}\right)^2 dx$
		(3) 設 $I_n = \int \frac{dx}{(1-x^4)^n}$, 證明當 $n \ge 1$, $4nI_{n+1} = (4n-1)I_n + \frac{x}{(1-x^4)^n}$ 並求
		$\int \frac{x^8}{(1-x^4)^4} dx $ 的値。
 內容	時間	北山田村大山岩崎
	分配	教學建議
5.7 廣義積分	分配 4	教学建識 應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx 或 \lim_{a\to\infty}\int_a^b f(x)dx 並可簡單記爲 \int_a^\infty f(x)dx 或 \int_a^b f(x)dx$
		應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx 或2\lim_{a\to-\infty}\int_a^b f(x)dx 並可簡單記爲 \int_a^\infty f(x)dx 或\int_{-\infty}^b f(x)dx$ 及第二類廣義積分,即
		應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx 或 2\lim_{a\to-\infty}\int_a^b f(x)dx 並可簡單記爲 \int_a^\infty f(x)dx 或 \int_{-\infty}^b f(x)dx$ 及第二類廣義積分,即 $\lim_{x\to a} f(x) = \infty , \int_a^b f(x)dx = \lim_{b\to 0^+}\int_{a+h}^b f(x)dx 和$
		應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx 或 2\lim_{a\to\infty}\int_a^b f(x)dx 並可簡單記爲 \int_a^\infty f(x)dx 或 \int_{-\infty}^b f(x)dx$ 及第二類廣義積分,即
		應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx 或 2\lim_{a\to-\infty}\int_a^b f(x)dx 並可簡單記爲 \int_a^\infty f(x)dx 或 \int_{-\infty}^b f(x)dx$ 及第二類廣義積分,即 $\lim_{x\to a} f(x) = \infty , \int_a^b f(x)dx = \lim_{b\to 0^+}\int_{a+h}^b f(x)dx 和$
		應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx 或 2\lim_{a\to\infty}\int_a^b f(x)dx 並可簡單記爲 \int_a^\infty f(x)dx 或 \int_{-\infty}^b f(x)dx$ 及第二類廣義積分,即 當 $\lim_{x\to a} f(x) = \infty$, $\int_a^b f(x)dx = \lim_{h\to 0^+}\int_{a+h}^b f(x)dx 和$ 當 $\lim_{x\to b} f(x) = \infty$, $\int_a^b f(x)dx = \lim_{h\to 0^-}\int_a^{b-h} f(x)dx$ 屬於第一類而具代表性的例子有:
5.7 廣義積分		應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx\text{或}2\lim_{a\to-\infty}\int_a^b f(x)dx\text{並可簡單記爲}\int_a^\infty f(x)dx\text{或}\int_{-\infty}^b f(x)dx$ 及第二類廣義積分,即
5.7 廣義積分		應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx\text{或}2\lim_{a\to\infty}\int_a^b f(x)dx\text{並可簡單記爲}\int_a^\infty f(x)dx\text{或}\int_{-\infty}^b f(x)dx$ 及第二類廣義積分,即 當 $\lim_{x\to a} f(x) = \infty$, $\int_a^b f(x)dx = \lim_{b\to 0^+}\int_{a+h}^b f(x)dx$ 和 當 $\lim_{x\to b} f(x) = \infty$, $\int_a^b f(x)dx = \lim_{b\to 0^+}\int_a^{b-h} f(x)dx$ 屬於第一類而具代表性的例子有: (1) $\int_0^\infty \frac{dx}{1+x}$ (2) $\int_{-\infty}^1 \frac{dx}{x^2}$ 教師宜提出 $\int_1^\infty \frac{dx}{x^2}$ 作例題,但指明這不是一廣義積分因其極限並不存在。 第二類廣義積分的例題有 $\int_0^1 \frac{dx}{\sqrt{x}}$ 和 $\int_{-1}^1 \frac{dx}{\sqrt{1-x}}$ 。
5.7 廣義積分		應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx\text{或}2\lim_{a\to-\infty}\int_a^b f(x)dx\text{並可簡單記爲}\int_a^\infty f(x)dx\text{或}\int_{-\infty}^b f(x)dx$ 及第二類廣義積分,即
5.7 廣義積分		應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx\text{或}2\lim_{a\to\infty}\int_a^b f(x)dx\text{並可簡單記爲}\int_a^\infty f(x)dx\text{或}\int_{-\infty}^b f(x)dx$ 及第二類廣義積分,即 當 $\lim_{x\to a} f(x) = \infty$, $\int_a^b f(x)dx = \lim_{b\to 0^+}\int_{a+h}^b f(x)dx$ 和 當 $\lim_{x\to b} f(x) = \infty$, $\int_a^b f(x)dx = \lim_{b\to 0^+}\int_a^{b-h} f(x)dx$ 屬於第一類而具代表性的例子有: (1) $\int_0^\infty \frac{dx}{1+x}$ (2) $\int_{-\infty}^1 \frac{dx}{x^2}$ 教師宜提出 $\int_1^\infty \frac{dx}{x^2}$ 作例題,但指明這不是一廣義積分因其極限並不存在。 第二類廣義積分的例題有 $\int_0^1 \frac{dx}{\sqrt{x}}$ 和 $\int_{-1}^1 \frac{dx}{\sqrt{1-x}}$ 。
5.7 廣義積分		應介紹廣義積分的基本概念而學生預期可認識第一類廣義積分,即 $\lim_{b\to\infty}\int_a^b f(x)dx\text{或}2\lim_{a\to\infty}\int_a^b f(x)dx\text{並可簡單記爲}\int_a^\infty f(x)dx\text{或}\int_{-\infty}^b f(x)dx$ 及第二類廣義積分,即 當 $\lim_{x\to a} f(x) = \infty$, $\int_a^b f(x)dx = \lim_{b\to 0^+}\int_{a+h}^b f(x)dx$ 和 當 $\lim_{x\to b} f(x) = \infty$, $\int_a^b f(x)dx = \lim_{b\to 0^+}\int_a^{b-h} f(x)dx$ 屬於第一類而具代表性的例子有: (1) $\int_0^\infty \frac{dx}{1+x}$ (2) $\int_{-\infty}^1 \frac{dx}{x^2}$ 教師宜提出 $\int_1^\infty \frac{dx}{x^2}$ 作例題,但指明這不是一廣義積分因其極限並不存在。 第二類廣義積分的例題有 $\int_0^1 \frac{dx}{\sqrt{x}}$ 和 $\int_{-1}^1 \frac{dx}{\sqrt{1-x}}$ 。

71