Indoor Air Quality measurement in Hong Kong

YEUNG Lam Lung Department of Chemistry HK University of Science and Technology

IAQ Certification Scheme

Sick Building Syndrome (SBS) or Building Related Illness (BRI)

Sick Building Syndrome (SBS)

- Irritation and itching eyes
- Nose and throat irritation
- Runny or congested nose
- Other flu-like symptoms
- Chest tightness
- Itchy skin occasionally with the development of rash
- Headaches
- Poor concentration
- Irritability

Guide on IAQ Certification Scheme

The GN applies to all buildings or totally enclosed areas served with mechanical ventilation system for human comfort except:

- 1. Domestic building
- 2. Medical building
- 3. Industrial building

Key Features of the IAQ Certification Scheme

- 2 Level Excellent or Good Class
- Voluntary for annual certification
- Certificate valid for 5 years for renewal full certification
- In between the 4 years recertification for CO₂ and RSP
- Building owner maintain post certification IAQ

Parameter	Unit	8-hour average ^a	
Falameter		Excellent Class	Good Class
Room Temperature	°C	20 to < 25.5 ^b	< 25.5 ^b
Relative Humidity	%	40 to < 70 °	< 70
Air movement	m/s	< 0.2	< 0.3
Carbon Dioxide (CO ₂)	ppmv	< 800 ^d	< 1,000 °
Carbon Monoxide (CO)	μ g /m³	< 2,000 ^f	< 10,000 ^g
	ppmv	< 1.7	< 8.7
Respirable Suspended Particulates (PM ₁₀)	μ g /m³	< 20 ^f	< 180 ^h
Nitrogen Dioxide (NO ₂)	μ g /m³	< 40 ^g	< 150 ^h
	ppbv	< 21	< 80
Ozone (O ₃)	μ g /m³	< 50 ^f	< 120 ^g
	ppbv	< 25	< 61
Formaldehyde (HCHO)	μ g /m³	< 30 ^f	< 100 ^{f, g}
	ppbv	< 24	< 81
Total Volatile Organic Compounds (TVOC)	μ g /m³	< 200 ^f	< 600 ^f
	ppbv	< 87	< 261
Radon (Rn)	Bq/m ³	< 150 ⁱ	< 200 ^f
Airborne Bacteria	cfu/m ³	< 500 ^{j, k}	< 1,000 ^{j, k}

12 IAQ Parameters

Physical Parameters - Thermal Comfort

Temperature Humidity Air Movement

Chemical Parameters

Organic Pollutants -

Combustible Gases -

Others -

Volatile Organic Compounds (VOCs) Formaldehyde (HCHO) Carbon Dioxide (CO_2) Carbon Monoxide (CO) Nitrogen Dioxide (NO_2) Ozone (O_3) Radon (Rn) Respirable Suspended Particulate(PM_{10})

Biological Contaminants - Total Airborne Bacteria and Fungi counts

Temperature

Excellent Class: 20-25.5°C

Good Class: less than 25.5°C

Relative Humidity

Excellent Class: 40-70%

Good Class: less than 70%

Q-Trak

Temperature & Relative Humidity Measurement

Excellent Class: less than 0.2 m/s

Good Class: less than 0.3 m/s

Air Flow and Ventilation Measurement

- A certain amount of air movement round the human body is essential for thermal comfort.
- It is also important in dispersing air pollutants. The required level of airflow depends on the air temperature and humidity.
- In the hot and humid summer months, for example, greater air movement can help produce a more comfortable environment.

- Airflow is determined by
- Ventilation
- Convection currents (created by hot air rising and cool air falling) in a room.
- Blocked or unbalanced ventilation systems, or too low pressure levels in ventilation ducts may restrict air movement, producing a "stuffy" atmosphere which makes occupants feel uncomfortable.

- Airflow is also sensitive to:
 - Changes in room occupancy
 - Installation or removal of partition walls
 - Size, quantity and arrangement of office equipment and furniture

 Too much air movement results in draughts and excessive cold.

Formaldehyde (HCHO)

Excellent Class: less than 30 μg/m³ (24 ppbv) Good Class: less than 100 μg/m³ (81 ppbv)

Formaldehyde (HCHO)

- A kind of Volatile Organic Compounds (VOCs)
- Comes from pressed wood products, carpet adhesives, smoking or other incomplete combustion process
- Can be a problem in areas where there are a large amount of carpets and pressed wood furniture

Formaldehyde (HCHO)

Can also be formed by burning wood, kerosene, incense or natural gas, by automobiles, and by cigarettes.

Health impacts

- irritating effect to eyes, nose and respiratory system
- sensitization
- a suspected human carcinogen

Air Sampling Strategies

- Active Sampling
- Passive Sampling

Active Sampling

 Actively drawing air through a sorbent filled cartridge or tubes by a personal sampling pumps

Passive Sampling

Diffusion barrier _ exposed

Sample blank/correction (contained in separate ~ compartment in housing)

Sliding cover in open or sampling position

High Performance Liquid Chromatography (HPLC)

Conditions

- SampleName : STD 100
- Column : (4.6 X 250mm) TSK ODS 100V
- Eluent : DI:ACN=60:40
- Flow rate : 1.0 mL
- Sample Conc. : 0.50mg/L
- Injection : 10 uL
- Temperature : 40
- Detector : (360nm) UV-Detector
- Software : EMPOWER

Excellent Class: less than 200 μg/m³ (87 ppbv) Good Class: less than 600 μg/m³ (261 ppbv)

Classification of Organic Compounds

According to their boiling points,

Organic compounds can be classified as 3 categories:

- Very volatile,
- Volatile
- Semi-volatile

Classification of Organic Compounds

According to their chemical structure/functional group:

- Aliphatic (straight chain)
- Aromatic (compounds with benzene ring)
- Halogenated hydrocarbons (Chlorine atom)
- Oxygenated compounds

Source of VOCs: Petroleum products, perfumes, pesticides, plastics, pigments, paints, adhesives and smoking

Fundamental VOC Emission Processes

- Evaporation
- Desorption
- Diffusion within a material

Materials	Decade Time
Wet (Paints, Adhesives)	First few hours
Dry (Building materials)	Months

Pollutants	Indoor Sources		
Benzene, Ethylbenzene, Toluene, Xylenes	ETS, solvents, paints, fax machine, computer terminals, adhesives, floor tile adhesives, styrenefoam		
Carbon Tetrachloride (CCI_4)	Solvents, refrigerant, fire extinguishers, grease solvents		
Tetrachloroethylene $(Cl_2C=CCl_2)$	Dry cleaned fabrics, upholstered furniture covering, spot/textile cleaner, fax machines and printers		
Chloroform (CHCl ₃)	Solvents, dyes, pesticides, fax machines, computer terminals, printers and chlorinated water		
Dichlorobenzene	Insecticide, dry cleaning agent, deordorant, mod and mildew control and air freshener		

Symptoms

- Eye irritation: burning, dry, watery eyes
- Throat irritation: dry throat
- Respiratory problems: shortness of breath; asthma
- Headaches; poor concentration; dizziness, tiredness, irritability.

Environmental Tobacco Smoke (ETS)

More than 4,500 compounds have been identified in both vapour and particulate phases

Tobacco smoke is composed of:

Main Stream (MS) : Smoke exhaled by smokers

Side Stream (SS) : Smoke released directly from burning cigarette

acetaldehyde	dibenzo(a,i)pyrene	N-nitrosdi-n-propylamine
acrylonitrile	dibenzo(a,e)pyrene	N-nitrosopyrrolidine
arsenic	dibenzo(a,l)pyrene	N-nitrosodi-n-butylamine
benz(a)anthracene	dibenzo(a,h)pyrene	<i>ortho</i> -toluidine
benzene	formaldehyde	styrene
benzo(a)pyrene	hydrazine	urethane
benzo(b)fluoranthene	indeno(1,2,3,-cd)pyrene	vinyl chloride
benzo(k)fluoranthene	lead	1,1-dimethylhydrazine
cadmium	nickel	2-nitropropane
chromium VI	N-nitrosodiethanolamine	2-napthylamine
DDT	N-nitrosodiethylamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone [NNK]
dibenz(a,h)acridine	N'-nitrosodimethylamine	4-aminobiphenyl
dibenz(a,j)acridine	N'nitrosonornicotine	5-methychrysene
dibenz(a,h)anthracene	N-nitrosopiperidine	7H-dibenzo(c,g)carbazole

Certified Reference isobutylene (TVOC) at 10 ppm

Photo-ionization Detector

$$R + h_v \longrightarrow R^+ + e^-$$

Excellent Class: less than 2000 μg/m³ (1.7ppmv) Good Class: less than 10000 μg/m³ (8.7ppmv)

Carbon Monoxide (CO)

- By-product of incomplete combustion process
- From heavy traffic
- Can bring more CO to the indoor environment if the ambient air is dirty
- Fresh air supply point must be located away from car parks or other traffic sources
- Extremely toxic and can kill if the level is too high as it takes away the oxygen transportation sites in blood

CO Electrochemical Cell

Carbon Dioxide (CO₂)

Excellent Class: less than 800 ppmv

Good Class: less than 1000 ppmv

Carbon Dioxide (CO₂)

- A surrogate gas for bio-effluent from the building occupants
- In ambient air, the level is around 400 ppm
- In indoor environment, a level of 1000 ppm has been used as an indicator for ventilation adequacy
- Health impacts:
 - not a toxic gas and no known health impact if the level is not too high. Industrial standards are from 5000 to 30000 ppm

CO2 NDIR Detector

I/O ratio of CO2

Apart from the health issue,

- An indicator of the ventilation condition
- Each person: CO2 exhalation rate: 0.3L/min
- I/O ratio close to 1, implies good ventilation

Nitrogen Dioxide (NO₂)

Excellent Class: less than 40 μg/m³ (21 ppbv) Good Class: less than 150 μg/m³ (80 ppbv)

Nitrogen Dioxide (NO₂)

- Comes from incomplete combustion process, either indoors or outdoors
- Can be high in kitchen environment or in area close to heavy traffic
- Cannot be removed by traditional filtration systems
- Health impacts:

causes irritation to eyes & respiratory system

NO2 Ogawa Passive sampler

NO, NO₂, NOx and SO₂ Sampling Protocol Using The Ogawa Sampler*

VE 05

Excellent Class: less than 50 μg/m³ (25 ppbv) Good Class: less than 120 μg/m³ (61 ppbv)

$\underline{\text{Ozone}}(O_3)$

- Can be produced by equipment that utilizes ultra-violet light or high voltage and causes ionization of air
- Office equipments such as photocopiers, laser printers and ionizers can produce ozone

 $O_2 + hv \rightarrow 2O + 2O_2 \rightarrow 2O_3$

- Very reactive and not tend to accumulate in the indoor environment
- Can only be found in substantial concentration near the source.
- Influence on Health:
 - Cause serious damage to lung if inhaled in high concentration

Irritates the eyes and respiratory tract

- It can be a very powerful cleaning tool for indoor air pollutants such as smoking
- Air purifiers or Personal air purifiers (PAP) for de-odorizing

UV light emitter for checking Ozone meter

Excellent Class: less than 150 Bq/m³

Good Class: less than 200 Bq/m³

- A radioactive gas that has no taste, smell nor color
- It is formed when radium (Ra-226) found in soils and rocks, particularly granite. (Ra-226) is the source of gaseous Rn-222 emission.

 $^{226}Ra \rightarrow ^{222}Rn \rightarrow ^{218}Po \rightarrow ^{214}Bi \rightarrow \rightarrow \rightarrow ^{210}Pb$

- Comes from soil gas entry and building materials emission
- High radon level when HVAC system is off and when a large amount of granite decoration materials exist
- Health effects:
 - When radon or its decay products are inhaled, some will be deposited in lung and will continue to emit radiation
 - Cause lung cancer in underground miners and it is the second main cause of lung cancer

"Control of Radon Concentration in New Buildings" to set out:

- The radon concentration limit for protection of the public health
- Factors to be considered for he design of new ventilation systems and building and mitigation measures
- The measurement protocols.

Radon Durridge RAD7 711

Excellent Class: less than 20 μ g/m³

Good Class: less than 180 μ g/m³

- In the form of PM₁₀
- Can be treated by a good air filtration system but part of it will still get into the indoor environment
- Both organic and inorganic matters can be attached on it. Health effect is complicated.
- High RSP level in smoking zone where Environmental Tobacco Smoke (ETS) exists
- Use of standalone air cleaning devices

- Combustion particulates (tobacco smoke, emissions from cooking, heating appliances, and incense burning
- Animal particulates (pollen and insect parts)
- Microbial particulates (bacteria, virus, mould and spores)
- Mineral particulates (asbestos)
- Radioactive particulates

• Health impacts:

- smoke particles from combustion cause respiratory irritation and infection
- itching and irritation to the skin, eyes, nasal & upper respiratory system
- aggravation of existing respiratory or cardiovascular disease
- Iung cancer

Excellent Class: less than 500 cfu/m³

Good Class: less than 1000 cfu/m³

Definition of Bioaerosol

Bioaerosols are airborne particles, large molecules or volatile compounds that are living, containing living organism or are released from a living organism.

Definition quoted from the ACGIH guidebook for the assessment of bioaerosol in the indoor environment

- The size of bioaerosol particles may vary from 0.01 micron to 100 micron
- Similar to ordinary non-viable particle, the behavior of bioaerosols are governed by the principles of gravitation, electromagnestism, turbulence and diffusion

Microbes

They are minute particles of living matter which occur in three main forms generally known as

- Viruses
- Bacteria
- Fungi

Size Comparison

In this diagram, approximately 100,000 of these virions fit within the 100 micron circle representing the pollen.

Bacteria

- High counts of environmental bacterial such as Staphylococcus epidermis, Micrococcus, and Flavobacterium shed from skin flakes indicate inadequate poor ventilation.
- The presence of bacteria in indoor environment does not necessarily imply that human infections.
- Legionella pneumophilia, Mycobacterium tuberculosis, and Corynebacterium diphtheria are of IAQ concern.
- Outbreaks of Legionnaires' disease in the past occurred in buildings that had air-conditioning systems with cooling towers or evaporative condensers
- Endotoxin present in outer cell wall of gram-negative bacteria is associated with sick building syndrome

Fungi

- Fungal growth favored by high temperature and high humidity
- Most fungi can induce allergic and asthmatic reactions in human
- Proliferation of fungi can produce VOCs that contributes to mouldy smell
- The VOCs are thought to contribute to SBS
- Examples of toxigenic fungi: Stachybotrys atra, toxigenic Aspergillus, Penicillum aurantiogrisem, Cryptococcus and Histoplasma.

- Problem with poor HVAC system and carpet environment
- Damp environment and still air favor the growth of micro-organisms
- Health impact:
 - health effect is complicated

some bacteria can be fatal and some cause allergic effect

Calibration Certificate

Address 5 revise	PLAN, NOT PLAN OW	19. B 11 Water Charl	A Research Lo Tax Shade M.V.	
Order No. : Cross			Ente of receipt	17-Mae-
Item Testeri				
Description - Mate Merellecturer : Ander Matel	(Microbial) Particle S an	Saing Samplers		
Table Constant	,		Sertel No. : 399-693	_
100330300000				
Date of Teet 12-Jun-04 Ambient Temperature : (22.5 a 2.5)/11			Supply Voltage (220 + 6) V, 82 H Relative Humidity (82 + 20) %	
Contraction of the party of the second				
Tost Specification	a .			
Test Specification Celevitori check eaco Celevitori processore	nding to customer's a V10	nçu'nent.		
Test Specification Cellbriton check acco Cellbriton processes Test Results	n ding to costomer's r Vitit	NÇU'HYDERİL		
Test Specification Celtration theok acro Celtration procedure Test Reservice The Fire Rate of ULT	e ostornoris : vizi = 28.2 Vinin	NQUINITIANTS.		
Test Specification Celtraton thek acro Celtraton processor Test Results The Fice Role of ULT Test equipment used.	eling to contorner's r vite = 28.3 Vinin	NQUINIYAHI.		_
Test Specification Celevitor thek acro Celevitor processor Test Results The Fice Rele of ULT Test epipment used Ecoloment Na	e vite vite = 28.3 l/min <u>Cect. No.</u>	NQUINITARIS.	Transfela to	-
Test Specification Cellbridge processive Test Provide of UUT Test equipment used Ecolometrika Stria	e ding to contornor's : van = 28 3 Vrain <u>Card. Ion.</u> vanos	Desilate 22 Tay 11	Treastile is	

Alter and a second
the sta

DUIS

