

Fuel Cell Workshop: Part I

Education Department, HKSAR &

Department of Chemistry
The University of Hong Kong

Sir William Grove 1839

Fig. 1.5 Four cells of Groves H_2/O_2 battery, used, in Grove's words, 'to effect the decomposition of water by means of its composition'

Batteries Vs Fuel Cells

Batteries

- Recharge
- Intermittent
- Closed system
- Mostly solid
- High power density

Fuel Cells

- ReFuel
- Continuous
- Open system
- Mostly Gas/Liquid Fuel
- High energy density
- Micro to Mega Watts

Types of Fuel Cells

Classification according to electrolyte

- Alkaline Fuel Cells (AFC)
- Proton Exchange Membrane (PEM)
- Phosphoric Acid (PAFC)
- Molten Carbonate (MCFC)
- Solid Oxide Electrolyte (SOFC)

Classification according to fuel-oxidant

- Hydrogen-oxygen
- Direct methanol (DMFC)
- Hydrogen-bromine

Figure 2.8. Schematic of a molten carbonate fuel cell.

Advantages of Fuel Cells

- Efficient conversion of Chemical Energy to useful energy (without losing to heat, mechanical linkages)
- Environmentally friendly
- Flexible: from micro to mega
- Continuous or Rapid refueling for portable use
- Quiet: for military applications

Carnot's Theorem

Efficiency of Heat Engine

$$\eta_{thermal} = \frac{Work}{Heat} = 1 - \frac{T_c}{T_h}$$

Fuel Cells

Chemical Energy — Electrical Energy

$$\eta_{\text{thermal}} = \frac{\text{Work}}{\text{Heat}} = \frac{\Delta G}{\Delta H} = \frac{\Delta H - T\Delta S}{\Delta H}$$

Thermodynamics

- •Relate Reactivity to Electrode Potential
- •Nernst Equation accounts for concentration(activity) effects

$$E - E^o = -\frac{RT}{nF} \ln \left[\frac{a_C^c a_D^d}{a_A^a a_B^b} \right] \approx \frac{-0.0591}{n} \log \frac{[\text{Re}]}{[Ox]}$$

•Calculate Electrode Potential from Free Energy

$$E_{cathode}^{o} - E_{anode}^{o} = E_{cell}^{o} = -\frac{\Delta G^{o}}{nF}$$

Electrochemical Activity Series

$$E_{cathode}^{o} - E_{anode}^{o} = E_{cell}^{o} = -\frac{\Delta G}{nF}$$

$$HYDROGEN + OXYGEN \longrightarrow WATER + ENERGY$$

Alkaline

Anode: $H_2 + 2 OH^- \longrightarrow 2H_2O + 2e^-$

Cathode: $\frac{1}{2} O_2 + 2e - + H_2O \longrightarrow 2OH^-$

Acidic

Anode: $H_2 \longrightarrow 2H^+ + 2e^-$

Cathode: $\frac{1}{2}O_2 + 2e - + 2H^+ \longrightarrow H_2O$

Thermochemistry

	$\Delta_{ m c} { m H}^{\circ}$	$\Delta_{\mathrm{c}}\mathrm{G}^{\circ}$	n	E°	kJ/kg	kJ/cm ³
	$(kJmol^{-1})$	(kJmol ⁻¹)				
Hydrogen	- 285	- 237	2	1.23	118500	10.65
Carbon	- 395	- 394				
Methane	- 890	- 818	8	1.06	51125	
Ethane	-1560	-1467				
Methanol	- 726	- 702	6	1.21	21938	17.37
Glucose	-2808	-2865	24	1.23	15916	24.57
Octane	-5471				47907	

Fuels: Hydrogen

Metals

Natural Gas

Small Hydrocarbons

(methanol, glucose)

Catalyst Support:

Porous Carbon

Ceramic Matrix

Metal Foam

PTFE

Oxidant: air

oxygen

halides

oxides

Bipolar Plate, Frame, container.

Electrolyte:

Porous Matrix

Proton Exchange Membranes

Yttrium stabilized Zirconia

Storage: Metal Hydride

Catalysts: platinum

metals

metal oxides

macrocycles

Electrodes:

- Catalyst Support: High Surface Carbon
- Size Effects of Catalysts
- Controlled Porosity
- Controlled Wetting
- Maximum Gas-Liquid-Solid Interface
- Minimize ohmic resistance
- Minimize ionic resistance

Gas Diffusion Electrode: PTFE bonded electrode

Performance of a Fuel Cell

Current Density

Figure 2.1. SCHEMATIC FUEL CELL POLARIZATION CURVE

Electrode Kinetics

- •Current ∝ Rate of reaction (Faraday's law)
- •Rate (current) described by Tafel Equation

$$E - E^{eq} = \frac{RT}{\alpha nF} \ln i + const._o$$

or Butler-Volmer Equation (Bard and Faulkner, Wiley 2001)

$$i = i_o \left\{ \frac{C_O}{C_O^*} \exp \left[\frac{-\alpha n F(E - E^{eq})}{RT} \right] - \frac{C_R}{C_R^*} \exp \left[\frac{(1 - \alpha) n F(E - E^{eq})}{RT} \right] \right\}$$

Electrode Kinetics

$$i = i_o \left\{ \frac{C_O}{C_O^*} \exp \left[\frac{-\alpha n F(E - E^{eq})}{RT} \right] - \frac{C_R}{C_R^*} \exp \left[\frac{(1 - \alpha) n F(E - E^{eq})}{RT} \right] \right\}$$

from Absolute Rate Theory

Reaction co-ordinate

Tests Other than Polarization Curve:

- Half Cell Study (3 Electrode set up)
- Chronopotentiommetry
- Chronoampereometry

Stack Design

- Manifold for fuel feed
- Manifold for oxidant feed
- Electronic circuit
- Ionic circuit
- Water transport
- Temperature, humidity control

Stationery Power Utilities

10~100 kW 100~500 kWhr ONSY (IFC), Fiji SOFC (Westing House, Honey Well) Load Levelling **Power Distribution** Life

Portable Power Sources

10~100 kW

100~500 kWhr

Battery vs Fuel Cells

Safety (H₂, MeOH, caustic electrolyte), Open vs Closed System

Volume vs Weight

Refueling Vs Recharging

Electric Vehicles

10~100 kW

100~500 kWhr

Battery vs Fuel Cells

Hybrid with ICE and capacitor

Costs: 7 times normal costs

Startup time

Direct/Reformer

Fueling Station Infrastructure

Special Applications

Defence

Communication

Energy Storage for Solar, Wind

Energy Vector

Biomedical

Enery Recovery from Waste Marine and Remote Power Sources

Figure 1. Implanted cardiac pacemaker

Demo Fuel Cells

0.02 ~ 10 W H₂, MeOH, Glucose, alcohols PEM, Alkaline

NaBH₄ Fuel Cell

Features:

- 1)Leak Proof
- 2)Compact Design
- 3)Sandwich Type "MEA"
- 4) Transparent outlook
- 5)Easy to use
- 6)Low cost

Typical Performance of HKU-001

Power by 4 AA 6.0V, 200—300mA

Powered by 1AA, 1.5V 100—200mA

Voltage Response to different loadings

Fuel Cell Used: HKU-002

Clock time	Time elapsed(min)	Volta ge	Current(V/R: mA)
	0	OCV	
	1		
	2		
	3		
	4		
	5		