Marking \& Grading

2017 HKDSE Physics \& Combined Science (Physics)

Report on Assessment

19 \& 26 Oct 2017

Overview

Paper	Physics	CS(Phy)
1A (MC)	Mean: 21.5 out of 33 (i.e. $65 \%)$ $\left(2016: 17.2\right.$ out of $\left.32^{*}\right)$	Mean: 11.1 out of 22 (i.e. $51 \%)$ $\left(2016: 8.5\right.$ out of $\left.21^{*}\right)$
1B	$>50 \%$ $(2016: \sim<50 \%)$	$>30 \%$ $(2016: \sim<30 \%)$
$\mathbf{2}$	$\sim>50 \%$ $(2016: \sim<50 \%)$	N.A.
SBA	$\sim>70 \%(\sim 2016)$	$\sim 70 \%(\sim 2016)$
Candidature	ALL: 11255	ALL: 442
SCH: 10615	SCH: 433	
one item deleted		

Marking \& Grading

- Expert Panel (Chief Examiners, 4~5 persons) determine level boundaries/cut scores based on Level descriptors / Group Ability Indicator (GAI) / Viewing student samples.
(1) CS(Phy) graded by Common items / Viewing student samples.

Endorsement by Senior Management/Public Exam Board

Note: GAI is calculated from Physics candidates' actual percentage awards obtained in 4 core subjects CEML.

Results

Physics			Cut score difference $=50$ marks			
Level	5**	5+	4+	3+	2+	1+
Percentage	2.9\%	28.6\%	50.9\%	72.2\%	89.6\%	97.8\%
No. of						- 8
CS(Phy)			Cut score difference $=48$ marks			
Level	5**	5+	4+	3+	2+	1+
Percentage	0.5\%	6.3\%	21.6\%	45.7\%	73.9\%	91.9\%

No. of MC	$20 / 21$	$17 / 18$	$14 / 15$	$11 / 12$	8	5

Paper 1A
Physics (33 MC)

$>\mathbf{7 0 \%}$	$\mathbf{5 0 \% - 7 0 \%}$	$<\mathbf{5 0 \%}$
11	18	4
Difficult		

CS (Phy) (22 MC)

$\mathbf{7 0 \%} \%$ $\mathbf{5 0 \%} \% \mathbf{- 7 0 \%}$ $<\mathbf{5 0 \%}$ 4 7 11 Easy Difficult

PHYSICS MC

Topic (No. of Qu.)	Average \% correct	No. of Qu. < 50\% correct
Heat \& Gases (4)	79%	0
Force \& Motion (9)	69%	1
Wave Motion (8)	61%	1
 Magnetism (9)	60%	2
Radioactivity (3)	63%	0

CS(PHY) MC

Topic (No. of Qu.)	Average \% correct	No. of Qu. < 50\% correct
Heat \& Gases (3)	69%	0
Force \& Motion (7)	54%	3
Wave Motion (6)	44%	4
 Magnetism (6)	45%	4

13. \rightarrow A small object is released from rest at a point very far away from a planet X. The object then starts moving towards $X . X$ does not have an atmosphere. Neglect the effect of other celestial bodies.
14. \rightarrow Blocks X and Y are connected by a light in extensible string passing over a fixed frictionless light pulley as shown.-The mass of X and Y are 0.5 kg and 1 kg respectively. Initially, Y is 1 m above the ground and the string is taut. The system is then released from rest.

\rightarrow What is the speed of Y just before it reaches the ground ? (Take $g=9.81 \mathrm{~m} \cdot \mathrm{~s}^{-2}$)
$\overrightarrow{~ * . A ~} \rightarrow 3.62 \mathrm{~m} \mathrm{~s}^{-1} \rightarrow \rightarrow \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow} \xrightarrow{\rightarrow}$ PHY \rightarrow CS(PHY)

Diagram NOT drawn to-scale
\rightarrow Which of the following graphs best shows the variation of the velocity v of the object with time t before it hits X ? ? block from the ground to the top of the inclined plane by the machine.
\rightarrow (I) \rightarrow Pull the block vertically upward at a uniform speed v.

(I)
(II)
\rightarrow Which of the following statements correctly compare(s) the two methods?
\rightarrow (1) \rightarrow The tension in the string is the same.
(2) \rightarrow The tension in the string is the same.
(3) $\overrightarrow{ }$ The work done by the machine on the block is the same.

14. \rightarrow Figure (a) shows the equilibrium positions of particles E to N in a medium. \cdot At time $t=0$, a longitudinal wave starts travelling from left to right. At time $t=1 \cdot \mathrm{~s}$, the positions of the particles are shown in Figure (b).

$\underset{\text { direction of travel }}{ }$
Which of the following statements MUST BE correct ?
$\rightarrow \vec{A}_{\mathrm{A}} \rightarrow$ The distance between particles $F \cdot \& N$ is equal to the wavelength of the wave. (54%) - (32\%) $\rightarrow \mathrm{B} \rightarrow$ The period of the wave is 1 (6\%) (11\%) $\rightarrow \mathrm{C} \rightarrow$ Particle E is alwavs at rest. (10%) (14%) (30\%) (43%)
26. \rightarrow The figure shows a simple d.c. motor, the coil $A B C D$ is mounted between the poles of two slab-shaped magnets.

PHY CS(PHY)
$(46 \%) \cdot(37 \%)$
$\rightarrow \quad \rightarrow \mathrm{B} \rightarrow$ The magnetic force acting on $B C$ is the greatest when the coil is horizontal $(16 \%) \cdot(18 \%)$
$\rightarrow \quad \rightarrow \quad$ C. \rightarrow The direction of the magnetic force acting on $A B$ remains constant. $\rightarrow \quad(14 \%) \cdot(16 \%)$

Which of the following statements is correct?
$\rightarrow \quad \rightarrow * A \rightarrow$ The turning effect is zero when the coil is vertical. D \rightarrow The direction of the current in the coil remains unchanged
favourable distractor
22. \rightarrow In the figure, two charged conducting spheres of the same mass m are put in a vertical plastic cylinder. The inner wall of the cylinder is smooth. The spheres are separated by a distance d and remain in equilibrium.

- Which of the following statements MUST BE correct?
\rightarrow (1) \rightarrow Both spheres canry positive charges.
\rightarrow (2) \rightarrow The amount of charges on the two spheres are the same.
\rightarrow (3) \rightarrow The separation d depends on m
$\rightarrow \vec{~} \rightarrow+\quad \rightarrow \quad \rightarrow \quad \rightarrow \quad \mathrm{PHY} \rightarrow \mathrm{CS}(\mathrm{PHY})$
\rightarrow A. \rightarrow (1) only $\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad(11 \%) \rightarrow$ (17\%)
$\rightarrow \quad \rightarrow$ C. \rightarrow (1) and (2) only $\rightarrow \rightarrow \rightarrow \rightarrow \quad \rightarrow \quad(63 \%) \rightarrow(39 \%)$
$\rightarrow \quad \rightarrow$ C. \rightarrow (1) and (2) only $\rightarrow \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow \quad$ and (3) only \rightarrow faveurable distractor $\rightarrow \quad \rightarrow \quad \rightarrow \quad(17 \%) \rightarrow(25 \%)$,

28. \rightarrow A metal rod $P Q$ of length l is moving along smooth horizontal metal rails X and Y with constant speed v in a uniform magnetic field of magnetic field strength B pointing into the paper. The metal rails X and Y are separated by a distance of d and are connected to a resistor of resistance R as shown.

Which of the following descriptions about the induced current is correct?

Observations

Although most candidates were competent in handling calculations, their misconceptions were revealed in various questions which require qualitative answers.
Not quite understand some experimental procedures and precautions which are subtle.
Weak or careless in handling/converting units or scientific notations.
Weaker candidates ~20-25\%.
Performance better in Paper 1 than in paper 2.

Points to note

31. \rightarrow Which of the following diagrams best shows the deflection of α and β particles in a uniform electric field in vacuum?

Points to note

Equating Electives (Total $=80$ each) using Paper 1

Before equating: Mean 38 to 45 / SD 17 to 22
After equating: Mean 43 to 47 / SD 16 to 18
2A Astronomy:
2B Atomic World:
2C Energy:

```
\uparrow\uparrow
```

2D Medical Physics: unchanged

THANK YOU

Question 1

(a) As shown in Figure 1.1b, the bulb of the soil thermometer is very large compared to those of common
thermometers. Suggest a reason for this design. thermometers. Suggest a reason for this design.

Paper 1B Q 1, 2, 4, 6

Question 1

(b) On a certain morning, the air temperature is $15^{\circ} \mathrm{C}$. An observer takes a measurement of the soil emperature at 1 m deep. The thermometer reading is $20^{\circ} \mathrm{C}$. It is given that the mass of the paraffin wax enclosing the thermometer bulb is 0.015 kg , and the specific heat capacity of paraffin wax is $2.9 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
(i) Calculate the energy loss of the paraffin wax as it cools down to the air temperature.
(ii) It is known that the paraffin wax enclosing the bulb of the thermometer gains or loses energy at a constant rate of $0.5 \mathrm{~J} \mathrm{~s}^{-1}$. estimate the time taken for the paraffin wax to reach the air temperature after the thermometer is lifted out of the soil.

(i)Comment:

Well performed.
(iii) If there is no paraffin wax enclosing the bulb of the thermometer, explain how the thermometer reading as recorded by the observer is affected.
(iii) The thermometer would be in direct contact with the cooler air and would cool down quickly.
The temperature reading would be less than the actual soil 1 A temperature.
(i)Comment:

- Performance was unsatisfactory.
- Very few candidates gave a concise explanation of the function of paraffin wax.
Common mistake:
- Paraffin is a good conductor so that the thermometer absorbs energy effectively, if there is no paraffin...

Question 2

2. The following experimental items are provided to set up an experiment to estimate the speed of a bullet fired from an air gun.
a smooth track
a trolley
a motion sensor used to measure the speed of the trolley
ome plasticine
an electronic balance
The set-up is shown in Figure 2.1.

Figure 2.1

Describe the procedures of the experiment. State the physical quantities to be measured and an equation for finding the speed of the bullet. Write down ONE precaution for getting a more accurate result. (5 marks)

Describe the procedures of the experiment. State the physical quantities to be measured and an equation for finding the speed of the bullet. Write down ONE precaution for getting a more accurate result. (5 marks)
2. Measure the mass of a bullet m and the mass of the trolley with plasticine M.
Fire the bullet towards the plasticine.
Read the speed of the trolley v immediately after the bullet hit the plasticine.
The speed of the bullet u is given by $u=\frac{M+m}{m} v$.
Precaution:
The bullet should be fired close to the plasticine.
The bullet should be fired along the direction of travel of the trolley. The track must be horizontal / friction compensated. (either one, or other reasonable answers)

(i)Comment:

- General performance was poor.
- Many candidates failed to mention that the speed of the trolley immediately after the collision should have been taken.
- Some candidates did not know that the motion sensor registered the trolley's speed instead of its distance travelled.
- Not many were able to state the precautions for getting more accurate result.
- Some failed to write down the equation correctly, some just stated $m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$

Question 4

4. (a) A steel ball bearing is released from rest at time $t=0$. A stroboscopic photo is taken at 0.05 s time time $t=0$, and a stroboscopic photo is taken at 0.05 s time intervals. The first and the last image of the stroboscopic photo are shown using circles (\mathbf{O}) in Figure 4.2. For reference, the stroboscopic photo of the bearing released from rest is also shown in the figure using crosses (x)

(1) In Figure 4.2, mark the positions of the projected bearing in the stroboscopic photo using circles (\mathbf{O}).

(1) Comment:

Some candidates failed to distinguish the horizontal uniform motion and vertical uniformly accelerated motion.
(2) Given that the bearing is projected horizontally with an initial speed of $1 \mathrm{~m} \mathrm{~s}^{-1}$, use the result of (a)(i) to calculate the speed of the projected bearing when the last image was taken. (3 marks)

(2) $\begin{aligned} v_{\mathrm{x}} & =1 \mathrm{~m} \mathrm{~s}^{-1} \\ v_{\mathrm{y}} & =u_{\mathrm{y}}+g t \\ & =0+9.78 \times(0.05 \times 3) \\ & =1.47 \mathrm{~m} \mathrm{~s}^{-1} \\ v & =\sqrt{v_{x}^{2}+v_{y}^{2}} \\ & =\sqrt{1^{2}+1.47^{2}} \\ & =1.78 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	1 M 1 M 1 A	Or $v^{2}=u^{2}+2$ as $v^{2}=0+2(9.78)(0.11)$ Award 1A only for correct answer deducted from other methods not using (a)(i) ans.

(i)Comment:

Common mistake: $v=u+g t$

$$
=1+9.78 \times(0.05 \times 3)
$$

Question 6

6. (a) A dipper vibrating with a frequency of 5 Hz is put in a water tank. Figure 6.1 shows the displacementdistance graph of the water wave at time $t=0 . Y$ is a particle in the water tank.

(i) Determine the wave speed of the water wave
(2 marks)

$$
\text { (a) (i) } \quad \begin{array}{rl|l}
v & =f \lambda \\
& =5 \times 4 \\
& =20 \mathrm{~cm} \mathrm{~s}^{-1} & 1 \mathrm{M} \\
& & 1 \mathrm{~A}
\end{array}
$$

(i) Well performed.
(ii) State the direction of motion of particle Y at $t=0$.
(b) If a small ball is released from rest from the top of a cliff, the speed of the ball becomes constant after a period of time. By considering the forces acting on the ball and using Newton's laws of motion, explain why the speed of the ball becomes constant.
(b) The air resistance acting on the ball increases as its speed increases.
When the air resistance equals to the weight of the ball,
net force acting on the ball becomes zero, by Newton's first law, the ball travels with constant speed
OR
net force acting on the ball becomes zero, by Newton's second 1A law, the ball will not accelerate further and travels with constant speed.

Marking guideline for 3rd mark:
Using Newton's law (accept $F=m a$) + relationship between net force and motion.
(1)Misconceptions:
'Weight' and 'air resistance' are an action-and-reaction pair.
(iii) Sketch the displacement-time graph of particle Y between $t=0$ and $t=0.4 \mathrm{~s}$ in Figure 6.2. (2 marks)

(i) Well performed.
(b) In Figure 6.3, A and B are two dippers vibrating in phase in a water tank. The distance between A and B is 6 cm . $O P$ is the perpendicular bisector of $A B$. Q is a second minimum from P, where $A Q=12 \mathrm{~cm}$ and $B Q=15 \mathrm{~cm}$.

(i) Explain why a minimum occurs at Q.
(2 marks)
(ii) Determine the wavelength of the water wave.
(2 marks)

(1) Comment: some only stated 'crest meets trough at Q '
(iii) Sketch in Figure 6.4 how the AMPLITUDE of the water wave varies along the line $O P$. (1 mark)

(i) Unsatisfactory performance.

Common answers:

QUESTION 3(a)

2017 DSE PHYSICS/ COMBINED SCIENCE (PHYSICS
 1B-3
 Q. 3,5 \& 10)

QUESTION 3(a)

The average kinetic energy of one monatomic gas molecule at temperature T is given by

$$
E_{\mathrm{K}}=\frac{3}{2}\left(\frac{R}{N_{A}}\right) T
$$

where R is the universal gas constant and N_{A} is the Avogadro constant. A monatomic gas is heated from 300 K to 350 K under fixed volume.
(a) Estimate the ratio of the root-mean-square speed ($c_{\text {r.ms }}$) of the gas molecules at the two temperatures ($\left(\frac{c_{\text {rms }} \text {, at } 350 \mathrm{~K}}{c_{\text {rms }}}\right.$ at 300 K$)$.
(2 marks)

QUESTION 3(a) (SAMPLE 2)

*3. The average kinetic energy of one monatomic gas molecule at temperature T is given by

$$
E_{\mathrm{K}}=\frac{3}{2}\left(\frac{R}{N_{A}}\right) T
$$

where R is the universal gas constant and N_{A} is the Avogadro constant. A monatomic gas is heated from 300 K to 350 K under fixed volume.
(a) Estimate the ratio of the root-mean-square speed ($c_{\mathrm{t} . \mathrm{s}}$) of the gas molecules at the two temperatures ($\left(\frac{c_{\text {cms }}}{c_{s}}\right.$ at 350 K)

$\left.\frac{1}{2} m \tau_{2}^{2}=\frac{3}{2}\left(\frac{k}{v_{n}}\right)^{300}\right)$
\qquad
Crms at $350 \mathrm{~K}: \operatorname{Crmis}^{30{ }^{k}}=\sqrt{7}: \sqrt{6}$
Crms ef ine
$\sqrt{6}$

QUESTION 3(b)

(b) Thus, using kinetic theory, explain why the gas pressure would increase.
(2 marks)

QUESTION 3(b)

Marking Scheme	Performance/ Common Errors
The speed of the gas molecules increases. They collide more frequently and violently with the wall of the container. Thus, the pressure increase, Hit the wall more frequently/ with greater rate. 1A Hit the wall (more) violently/ vigorously/ with greater momentum/ with greater momentum change/ with greater speed/ with greater kinetic energy AA correct Misconception: The collisions among gas molecules themselves would contribute to the gas pressure.	

QUESTION 3(b) (SAMPLE 1)

(b) Thus, using kinetic theoryy, explain why the gas pressure would incragase.
(2 marks)
The volute is anchanged but the "kinetic energy of the gas z increased. The number of colleien of gas nolecules hicting. the inner surface of the container per unit time is increased.
Pressure is thus incresed.

QUESTION 3(b) (SAMPLE 2)

(b) Thus, using kinetic theory, explain why the gas pressure would increase.

When temperature inorease, the molecales" speed inside hcrease, which they hile the inner surface/ more frequencly, pluse, the collision of molecules ncrease as well Heace. If the volume remwin unctange, the pressure increase.

1A
0A

QUESTION 5(a)

A teapot of mass 1 kg is put 30 cm from the centre of a horizontal turntable, Figure 5.1 shows the side view. When the turntable is rotating, the teapot remains at the same position on the turntable.

Figure 5.1

(a) On Figure 5.1, draw and label all the forces acting on the teapot when the turntable is rotating.
(2 marks)

QUESTION 5(a)

Marking Scheme	$\begin{array}{l}\text { Performance/ } \\ \text { Common Errors }\end{array}$
	$\begin{array}{l}\text { Any 2 forces correct } \\ \text { (direction and point of } \\ \text { action) with label } \\ \text { (can be in symbols) 1A } \\ \text { All correct (including } \\ \text { no additional forces } \\ \text { and labels are not } \\ \text { in symbols) }\end{array}$
\begin{array}{l}\text { 2A }\end{array}
$$ \quad \begin{array}{l}Most candidates

managed to indicate

the forces acting on

the teapot.\end{array}\right]\)| A few of them |
| :--- |
| labelled the frictional |
| force as 'centripetal |
| force'. |

QUESTION 5(a) (SAMPLE 1)

A teapot of mass 1 kg is put 30 cm from the centre of a horizontal turntable, Figure 5.1 shows the side view. When the turntable is rotating, the teapot remains at the same position on the turntable.

(a) On Figure 5.1, draw and label all the forces acting on the teapot when the turntable is rotating

QUESTION 5(a) (SAMPLE 2)

A teapot of mass 1 kg is put 30 cm from the centre of a horizontal turntable, Figure 5.1 shows the side view. When the turntable is rotating, the teapot remains at the same position on the turntable.

Figure 5.1

(a) On Figure 5.1, draw and label all the forces acting on the teapot when the turntable is rotating.

QUESTION 5(b)

(b) Taking the teapot as a point mass, estimate the net force acting on the teapot when the turntable is rotating at a rate of 0.5 revolutions per second.

QUESTION 5(b)

Marking Scheme	Performance/ Common Errors
	A lot of candidates failed to work out the correct angular velocity from the rate of revolution given.

QUESTION 5(b) (SAMPLE 1)

(b) Taking the teapot as a point mass, estimate the net force acting on the teapot when the turntable is rotating at a rate of 0.5 revolutions per second.

QUESTION 5(b) (SAMPLE 2)

(b) Taking the teapot as a point mass, estimate the net force acting on the teapot when the turntable is rotating at a rate of 0.5 revolutions per second

QUESTION 5(c)

Marking Scheme	Performance/ Common Errors
The initial linear speed of the teapot $=r \omega=0.3 \pi \mathrm{~m} \mathrm{~s}^{-1}$ Deceleration of the teapot $a=\frac{f}{m}=\frac{10}{1}=10 \mathrm{~m} \mathrm{~s}^{-2} \quad 1 \mathrm{M}$ Distance travelled s is given by $\begin{aligned} v^{2} & -u^{2}=2 a s \\ s & =\frac{u^{2}}{2 a}=\frac{(0.3 \pi)^{2}}{2(10)} \\ & =0.044 \mathrm{~m}(\text { or } 4.4 \mathrm{~cm}) \\ & 1 \mathrm{~A} \end{aligned}$ ALTERNATIVE The initial linear speed of the teapot $=r \omega=0.3 \pi \mathrm{~m} \mathrm{~s}^{-1}$ K.E. of the teapot is dissipated in work done against friction $\frac{1}{2} m u^{2}=f d$ $\begin{aligned} d= & \frac{m u^{2}}{2 f}=\frac{(\mathrm{I})(0.3 \pi)^{2}}{2(10)} \quad 1 \mathrm{M}+1 \mathrm{M} \\ & =0.044 \mathrm{~m} \end{aligned}$	$1 \mathrm{M} \text { for using } f=10 \mathrm{~N}$ $\begin{array}{ll} 0^{2}-(0.3 \pi)^{2}=2(10) \mathrm{s} & 1 \mathrm{M}+1 \mathrm{M} \\ 5=-0.044 \mathrm{~m} & 0 \mathrm{~A} \end{array}$ Accept: 0.04 m or 4 cm Some candidates wrongly applied the equation for circular motion to tackle the problem.

QUESTION 5(c) (SAMPLE 1)

(c) The turntable is suddenly stopped and the teapot slips. The turntable is rotating at a rate of 0.5 revolutions per second just before it stops, and the frictional force acting on the teapot is 10 N when it is slipping. Determine the distance travelled by the teapot after the turntable stops.
(3 marks)

QUESTION 5(c)

QUESTION 5(c) (SAMPLE 2)

(c) The turntable is suddenly stopped and the teapot slips. The turntable is rotating at a rate of 0.5 revolutions per second just before it stops, and the frictional force acting on the teapot is 10 N when it is slipping. per second just before it stops, and the frictional force acting on the
Determine the distance travelled by the teapot after the turntable stops.
deceremention at ta.pot: F=ma \qquad
$v a t \operatorname{stop} \times(0.5) \times 0.3=10 \mathrm{~ms}^{-2} \downarrow$

- distance fravelled: $2 a s=0^{2}-\left(0,155^{2} \quad \backslash 1 \mathrm{M}\right.$

$$
\begin{aligned}
-205 & =0.0225 \\
1 & =1.25 \times 10^{-3} \mathrm{my} \quad 1 \mathrm{M}
\end{aligned}
$$

QUESTION 10(a)

Dust may adhere to the surfaces of photos and films due to electrostatic attraction. To remove the dust effectively, a special brush with a thin slice of polonium-210 $\left({ }_{84}^{21} \mathrm{Po}\right)$ fixed near the brush hair as shown in Figure 10.1 may be used. Polonium-210 undergoes α decay and the daughter nucleus lead (Pb) is stable.

Figure 10.1

(a) Write a nuclear equation for the decay of polonium- 210 .
(2 marks)

QUESTION 10(a)

Marking Scheme			Performance/
${ }_{84}^{210} \mathrm{PO} \rightarrow{ }_{82}^{206} \mathrm{~Pb}+{ }_{2}^{4} \mathrm{He}$	2A		Candidates did well in this part.
2 A	1A	0A	
${ }_{84}^{218} \mathrm{PO} \rightarrow{ }^{206}{ }_{82}^{206} \mathrm{~Pb}+\alpha$	${ }_{44}^{12} \mathrm{PO} \rightarrow{ }^{320}{ }^{206} \mathrm{~Pb}$	${ }_{44}^{212} \mathrm{Po} \rightarrow \mathrm{Pb}+\alpha$	
${ }_{{ }_{4}^{20}}^{20} \mathrm{Po}-{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{{ }_{22} \mathrm{P}}^{26} \mathrm{~Pb}$ ${ }_{4}^{212} \mathrm{Po}-\alpha \rightarrow{ }_{0}^{205} \mathrm{~Pb}$		${ }_{44}^{212} \mathrm{PO} \rightarrow \mathrm{Pb}+{ }_{2}^{+} \alpha$	
$\xrightarrow[84]{218} \mathrm{Po}{ }^{\sim}{ }^{2}{ }_{82}^{208} \mathrm{~Pb}$	${ }_{84}^{212} \mathrm{P} \mathrm{P}_{3}{ }_{22}^{206} \mathrm{X}+\alpha$		
	${ }_{84}^{210} \mathrm{PO} \rightarrow{ }^{\text {mas }}{ }_{82} \mathrm{~Pb}+\alpha$	${ }_{84}^{20} \mathrm{PO} \rightarrow{ }_{82}{ }_{8}^{\text {mag }} \mathrm{Pb}$	
	${ }_{8,}^{210} \mathrm{PO} \rightarrow{ }_{\text {mase }}^{208} \mathrm{~Pb}+\alpha$		

QUESTION 10(a) (SAMPLE 1, 2)

(a) Write a nuclear equation for the decay of polonium- 210 .

1A
(a) Write a nuclear equation for the decay of polonium-210.
${ }_{-84}^{210} \mathrm{P} \rightarrow \mathrm{Pb}+{ }_{2}^{4} \mathrm{He}$
0A

QUESTION 10（b）

（b）Briefly explain how the α particles help clean the charged dust．
（2 marks）

QUESTION 10（b）（SAMPLE 1， 2）
（b）Briefly explain how the α particles help clean the charged dust．attrack（2 marks） With the high on ironizing power，α cubd atsoce atrack x
charged duse don brush ，and the duse remore 0 A

1A

QUESTION 10（c）

（c）Briefly explain why the polonium－210 slice must be fixed near to the brush hair．
（1 mark）

Marking Scheme	Performance／ Common Errors
a particles has a range of only a few centimeters in air．	1A
Candidates did well in this part．	

QUESTION 10(c) (SAMPLE 1,

 2)(c) Briefly explain why the polonium-210 slice must be fixed near to the brush hair.

The range of a pardiche is very short.
1A
(c) Briefly explain. $\begin{gathered}\text { bld } \\ \text { the polonium- } 210 \text { slice must be fixed near to the brush hair. }\end{gathered}$

QUESTION 10(d)

(d) The manufacturer recommends that the brush should be returned to the factory for replacement of the polonium-210 slice every year. Taking the activity of a newly replaced polonium- 210 slice as 1 unit, find its activity after one year (365 days). Given: half-life of polonium-210 is 138 days.
(2 marks)
QUESTION 10(d)

QUESTION 10(d) (SAMPLE 1)

*(d)The manufacturer recommends that the brush should be returned to the factory for replacement of the polonium-210 slice every year. Taking the activity of a newly replaced polonium-210 slice as 1 unit, find its activity after one year (365 days). Given: half-life of polonium-210 is 138 days. (2 marks)
$A=1 \times\left(\frac{1}{2}\right)^{\frac{26}{130}}$
(1

QUESTION 10(d) (SAMPLE 2)

*(d)The manufacturer recommends that the brush should be returned to the factory for replacement of the polonium-210 slice every year. Taking the activity of a newly replaced polonium-210 slice as $1 \begin{aligned} & \text { unit, find } \\ & \text { (} 2 \text { marks) }\end{aligned}$
$K=\frac{\ln ^{2}}{38 \times 24 \times 3600}$

1A
1A

TRank You!

2017 HKDSE - PHYSICS

1B-2
Questions 7, 8 \& 9

O7(a)(i)
$n_{p} \cdot \sin \phi_{p}=n_{a} \sin \phi_{a}$
$\sin \phi_{p}=\frac{1}{1.36}$
1 M
$\phi_{p}=47.3^{\circ}(47.332)$
$\sqrt{1 \mathrm{~A}}$
\cdots...the aritioch angle $=47.3^{\circ}$

QUESTION 8

(b) As the voltage across the light bulb increases, the temperature of 1 A the light bulb increases, thus the resistance of the light bulb increases.
(c) $R=V / I$ is the definition of resistance. It is applicable to all conductors.

Many candidates only described how the resistance varies with the voltage according to the graph rather than to explain that the temperature increase led to the increase in resistance.

Q8(b)

 He avëane relocity of cloape flow ratuce, hene the curset ratwer

Q8(c)

QUESTION 8

(d)

QUESTION 8

(e)

O8(d)

...aresistunce st light bulb at $V=01 V$ and $2.5 V$
ore- 1.32Ω and 10Ω repectively.

QUESTION 9

(iv) The two forces is an action and reaction pair

Thus the two forces are equal in magnitude.

$$
\mathrm{Og}(\mathrm{a})(\mathrm{i} \mathrm{~V})
$$

The forces are equal in mognctubel al they.

ane the action -and reaction pair y meir
.......mogninule...must............ame \qquad

$$
\text { Both for are calculate }=\frac{U_{00} I p 20}{2 \pi r} X
$$

$$
\text { T............megneTin forme action g on both } P \text { and } Q \text { are }
$$

0 A

QUESTION 9

(b) (i) (i) neighboring wises in the same the wire segments attract each
and the solenoid is compressed.
(ii) Current is still flowing in the same direction between neighboring wire segments at each instant,
thus the solenoid will be compressed due to magnetic force.

> Many answers were too vague to award a mark

Og(b)(i)

Thus,........thecsil.........compresued...
........spring will ...
 side The mage tic affration fore between the atferacty. Sade the magnetic aftradine fore between the atferucty \cdots spray.
Og(b)(i)

Qg(b)(ii)
\qquad It is becanse when an alternatine current pasbes through the currentimeach coil art, still the

all the time. It will not be compressed and stretched
alternately.

$$
\begin{aligned}
& \text { Although the curvent is alternating, the direction } \\
& \text { of current floware stil the same } X
\end{aligned}
$$

Summary of candidates performance (MC)

- 7 of 8 questions only need qualitative analysis.
- The correct percentage about 50% to 60%.
- The Discrimination Index about 0.52 to 0.64 .
- Top 10% candidates ALL questions are correct.
- Most favourable distractor about 16% to 26%.

MC 1.2

Two astronauts are experiencing 'weightlessness' in a space station. The mass of the astronauts are 50 kg and 70 kg respectively. Which of the following statements is/are correct?
(1) No gravitational force is acting on the two astronauts by the Earth.
(2) The net forces acting on the two astronauts are the same.
(3) The two astronauts have the same acceleration.
A. (1) only
B. (3) only* 55.55%
C. (1) and (2) only
D. (2 and (3) only 25.82%

There are still 45% of the candidates did not understand the meaning of weightlessness

MC 1.4

The following shows two pictures of the same region of the sky taken in January and May of a certain year. P, Q, R, S and T are five stars.

(1) Stars P, Q and R are equidistant from the Earth.
(2) The parallax of star S is smaller than that of star T.
(3) Star S is closer to the Earth than star T.

A. (1) Only

C. (1) and (2) only
D. (2)and (3) only

About half of the candidates did not know the closer the star to the observer is, the greater the parallax results

MC 1.7

It is known that the Sun is a class G star, and the star Zeta Puppis is a class O supergiant. Which of the following is correct? Given: the sequence of the spectral classes is OBAF GKM.

	higher surface temperature	greater luminosity

Spectral classification and the luminosity of star depend on the its temperature and size

Q1 Structured question

(a) Figure 1.1 shows an object of mass m orbiting around a star of mass M with a radius of r. The velocity of the object is v.
(i) Using Newton's law of gravitation, show that

$$
v^{2}=\frac{G M}{r},
$$

where G is the universal gravitational constant.
(ii) Hence, or otherwise, show that

$$
T^{2}=\frac{4 \pi^{2}}{G M} r^{3}
$$

where T is the period of the motion of the object.
Figure 1.1

- a(i) $\frac{G M m}{r^{2}}=\frac{m v^{2}}{r}$
$v^{2}=\frac{G M}{r}$
1 M gravitational force = centripetal force
- (ii)

Candidates' performance in (a) was satisfactory.
Just some of them employed incorrect formula or made mistakes in manipulating equations using ratio.
(b) Stars and gases orbit around the centre of the M33 Galaxy. At a position X near the edge of the galaxy ($3.98 \times 10^{20} \mathrm{~m}$ from the centre of the galaxy), the orbital velocity of the hydrogen gas is about $1.23 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$. You may assume that the hydrogen gas at X orbits with a circular orbit.
(i) One of the spectral lines of hydrogen gas (the H I line) has a wavelength of 21.106 cm . If the hydrogen gas at X is moving towards the Earth along the line of sight, what would be the observed wavelength of the H I line? (2 marks)
(ii) How long would it take for the hydrogen gas at X to complete one orbit around the M33 Galaxy ? (1 mark)

By $\frac{\Delta \lambda}{\lambda_{o}} \approx \frac{v}{c}$
$\Delta \lambda \approx \frac{v}{c} \lambda_{o}=\frac{1.23 \times 10^{5}}{3 \times 10^{8}} \times 21.106$
$=8.65346 \times 10^{-3} \mathrm{~cm}$

> Or correct sub. of
> $\frac{\lambda-\lambda_{o}}{\lambda_{o}}=\frac{v}{c} \quad$ or $\quad \frac{\lambda_{o}-\lambda}{\lambda_{o}}=\frac{v}{c}$
no need to consider the blue or red shift
$\lambda=\lambda_{0}-\Delta \lambda$
$=21.106-8.65346 \times 10^{-3}$
$=21.097 \mathrm{~cm}(21.09 \sim 21.1 \mathrm{~cm})$
b(ii)

$$
\begin{aligned}
& T=\frac{2 \pi r}{v} \\
& =\frac{2 \times 3.14 \times\left(3.98 \times 10^{20}\right)}{1.23 \times 10^{5}} \\
& =2.03 \times 10^{16} \mathrm{~s}\left(6.42 \times 10^{8} \mathrm{yr}\right)
\end{aligned}
$$

Some candidates arrived at answers with wrong orders in the calculation in (b)(ii).
(iii) Using the result of (a)(ii), or otherwise, estimate the mass of the M33 Galaxy in solar mass.
Given: $1 \mathrm{AU}=1.50 \times 10^{11} \mathrm{~m}$, and 1 year $=3.16 \times 10^{7} \mathrm{~s}$. (3 marks)
(iv)Astronomers estimated that the total mass of luminous objects in the M33 Galaxy is 7×10^{9} solar mass. Compare this to your answer in (b)(iii) and suggest a reason to explain the difference, if any.

Quite a number of the candidates failed to relate blue shift with the decrease in the wavelength of the spectral line observed.

For the hydrogen gas orbiting the M33 Galaxy at X,
$T^{2}=\frac{4 \pi^{2}}{G M} r^{3}$
where T is the answer in (b)(ii), M is the mass of the
M33 Galaxy and r is the distance between position X
and the centre of the galaxy.

Consider the Earth orbiting around the Sun,
$T_{S}^{2}=\frac{4 \pi^{2}}{G M_{S}} r_{S}^{3}$ \qquad
where $T_{\mathrm{S}}=1$ year, $r_{\mathrm{S}}=1 \mathrm{AU}$ and M_{S} is the solar mass
(1) \& (2) and we have
$\frac{T^{2}}{T_{S}^{2}}=\frac{M_{S} r^{3}}{M r_{S}^{3}}$
$M=\frac{T_{S}^{2} r^{3}}{T^{2} r_{S}^{3}} M_{S}$
$=\left(\frac{3.16 \times 10^{7}}{2.03 \times 10^{16}}\right)^{2}\left(\frac{3.98 \times 10^{20}}{1.50 \times 10^{11}}\right)^{3} M_{S}$
$=4.526 \times 10^{10} M_{\mathrm{S}} \quad \sim 4.53 \times 10^{10} M_{\mathrm{S}}$
(iv) Dark matter / a (super) massive black hole / non luminous object exists in the galaxy.

ALTERNATIVE:
Use $T^{2}=\frac{4 \pi^{2}}{G M} r^{3}$ to find the mass of M33 $\quad 1 \mathrm{M}$

$$
M=\frac{4 \pi^{2}\left(3.98 \times 10^{20}\right)^{3}}{G\left(2.03 \times 10^{16}\right)^{2}}=(9.055 \sim 9.06) \times 10^{40} \mathrm{~kg}
$$

Use $\quad T_{S}^{2}=\frac{4 \pi^{2}}{G M_{S}} r_{S}^{3}$ to find solar mass

$$
M_{\mathrm{S}}=\frac{4 \pi^{2}\left(1.5 \times 10^{11}\right)^{3}}{G\left(3.16 \times 10^{7}\right)^{2}}=2.0 \times 10^{30} \mathrm{~kg}
$$

Then $M=(4.526 \sim 4.53) \times 10^{10} M_{S}$
1 A

Some candidates arrived at answers with wrong orders in the calculation in (b)(iii).
Part (b)(iv) was in general well answered.

HKDSE 2017

Physics Paper 2

Section B : Atomic World

Q. 2 Multiple-choice questions

A photocell is connected to a 1 V d.c. source as shown. A monochromatic light beam with each photon of energy 5 eV is incident on cathode C of the photocell so that photoelectrons are emitted. If the work function of cathode C is 2 eV , what is the maximum kinetic energy of the photoelectrons reaching anode A ?
A. $\quad 2 \mathrm{eV} \quad(29.85 \%)^{*}$
$\begin{array}{lll}\text { C. } & 4 \mathrm{eV} & (51.34 \%) \\ \text { D. } & 6 \mathrm{eV} & (15.75 \%) \\ & & \end{array}$
Common mistakes
Most candidates calculated the KE of the photoelectrons just emitted from the cathode

Q. 2 Multiple-choice questions

2.3 When monochromatic light of wavelengths λ and $\frac{3}{4} \lambda$ are incident on the cathode surface of a photocell separately, the stopping potentials are in the ratio of $1: 2$. What is the longest wavelength of monochromatic light that can cause photoelectrons to be emitted from the photocell ?
A. $\lambda \quad(10.45 \%)$
B. $\frac{4}{3} \lambda \quad(16.58 \%)$
C. $\frac{3}{2} \lambda \quad(56.83 \%)^{*}$
D. $\frac{5}{3} \lambda \quad(14.56 \%)$

Remarks:
By $e V_{s}=\frac{h c}{\lambda}-\Phi$
$e V_{s}=\frac{h c}{\lambda}-\frac{h c}{\lambda_{o}} \quad \ldots \ldots$ (1)
$e\left(2 V_{s}\right)=\frac{h c}{\frac{3}{\lambda} \lambda}-\frac{h c}{\lambda_{o}}$
$\lambda_{o}=\frac{3}{2} \lambda$

Q. 2 Multiple-choice questions

2.4 A parallel beam of yellow light from a sodium discharge tube is directed to a glass tube filled with sodium vapour. Which of the following would happen after the sodium vapour absorbs the yellow light?
A. No more yellow light can be seen. (15.86%)
B. The sodium vapour emits yellow light in the direction of the incident beam. (10.39\%)
C. The sodium vapour emits yellow light in all directions. (59.91\%)*
D. The sodium vapour emits white light in all directions. (13.31\%)

Common Mistakes:

Some candidates thought that sodium vapour absorbed all the yellow light.

Figure 2.1 shows part of the line spectrum of hydrogen.

Figure 2.1
 $\xrightarrow{\text { increasing wavelength }}$

Q. 2 Structured question

It contains a series of spectral lines with wavelength λ given by

$$
\frac{1}{2}=R\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right),
$$

where R is a constant and $n=3,4,5, \ldots$ There are no spectral lines in the series with wavelength less than that of line $X(366 \mathrm{~nm})$ nor greater than that of line Y.

Q. 2 Multiple-choice questions

2.5 A beam of 8 keV electrons is directed towards a crystal to observe the diffraction of electrons. What is the de Broglie wavelength of a 8 keV electron?
A. $\quad 4.34 \times 10^{-10} \mathrm{~m} \quad(10.93 \%)$
B. $1.37 \times 10^{-11} \mathrm{~m} \quad(51.90 \%)^{*}$
C. $1.74 \times 10^{-19} \mathrm{~m} \quad(16.11 \%)$
D. $5.49 \times 10^{-21} \mathrm{~m} \quad(20.07 \%)$

Remarks:
By $\lambda=\frac{h}{m p}$
$=\frac{m v}{\sqrt{2 m(K \cdot E)}}$
Common mistakes:
Some candidates did not convert 8 keV into joule in their calculation.

Q. 2 Structured question

(a) Use Bohr's model of the hydrogen atom to explain why the spectral lines are discrete but not continuous.

Marking Guide

(a) When an atom transits from a higher energy level to a lower one, a photon with energy equals to the energy difference between the levels is emitted. (1A)

Since energy levels are quantized, the energy (and thus wavelength) of the photons emitted can take some discrete values only. (1A)

Common mistakes:
Many candidates failed to point out the energy levels are quantized and they also failed to state that the energy (wavelength) of the photons depends on the energy difference in the transition.

Q. 2 Structured question

(b)(i) Which region of the electromagnetic spectrum does line X belong to? (1 mark)
(ii) What is the energy of a photon of line X ? Express your answer in eV. (2 marks)

Marking Guide
(b) (i) Line X belongs to the ultraviolet region. (1A)
(ii)
energy $=\frac{h c}{\lambda e}$
$=\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{\left(366 \times 10^{-9}\right)\left(1.60 \times 10^{-19}\right)} \quad$ (1M)
$=3.40 \mathrm{eV}[3.39 \mathrm{eV}]$ (accept $3.39-3.41$)
$=3.40 \mathrm{eV}[3.39 \mathrm{eV}](\mathrm{acc}$

(do not accept -3.40 ev)
Remarks: 1 MAccept :
(b) ii

1. Energy $=+/-\frac{13.6}{4}$
2. $\mathrm{E}=\frac{h c}{\lambda e}=5.43 \times 10^{-19} \mathrm{~J}$
Q. 2 Structured question
(c) (i) State the transition in a hydrogen atom that can produce line Y. (1 mark)

Marking Guide

Remarks:
Accept: $n=2$ to $n=3$ or
from $1^{\text {st }}$ to $2^{\text {nd }}$ excited state
Common mistakes:
Some candidates stated 'from $3^{\text {rd }}$ to $2^{\text {nd }}$ excited state' or 'from $n=2$ to $n=\infty$ '

Q. 2 Structured question

(c) (ii)Determine the wavelength of line Y. (2 marks)

Marking Guide
From line X, we have
$\frac{1}{366}=R\left(\frac{1}{2^{2}}-0\right)$
$R \approx 0.0109\left(\mathrm{~nm}^{-1}\right)\left(1.09 \times 10^{7} \mathrm{~m}^{-1}\right)$
For line Y,
$\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$
$\lambda=658.8 \mathrm{~nm}(654 \mathrm{~nm}-661 \mathrm{~nm}) \quad(1 \mathrm{~A})$
Common mistakes:
Some candidates wrongly used
$\frac{1}{366}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$
to find R.

Q. 2 Structured question

ALTERNATIVE

$E=E_{2}-E_{3}$
$h f=13.6\left(1 / 2^{2}-1 / 3^{2}\right) \mathrm{eV}$
(1M)
$\mathrm{h} \frac{c}{\lambda}=13.6\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right) \times 1.6 \times 10^{-19}$
$=6.58 \times 10^{-7} \mathrm{~m}$
(1A)

Common Mistakes.
-some candidates did not converted eV into joule
-some just found the frequency of the line instead of its wavelength

The End

MCQ 3.5

Paper 2

Section C : Energy and Use of Energy
3.5 A solar panel of area $3 \mathrm{~m}^{2}$ is installed on a roof. Sunlight makes an angle of 20° to the normal of the panel at noon. The solar constant is $1366 \mathrm{~W} \mathrm{~m}^{-2}$ and 40% of the radiation power is absorbe by the atmosphere.

If the efficiency of the solar panel is 10%, what is the electrical power generated by it at noon ?

MCQ 3.6
3.6 The figure shows a wind turbine.

Which of the following statements explain why the wind turbine is NOT 100% efficient in converting the kinetic energy of the wind to electrical energy?
(1) There are mechanical energy losses in the moving parts.
(2) Wind does not stop completely after passing through the rotor.
(3) The direction of wind changes irregularly.

[^0]
MCQ 3.7 (deleted)

3.7 The hydroelectric power plant shown has an efficiency of 40% in electricity generation. If the flow rate of the water is $300 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, what is the power output of the plant ? Given: density of water is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$. Take $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$.

$$
\frac { m } { t } g h \times \eta = \frac { 3 0 0 \times 1 0 0 0 } { 1 } \times 9 . 8 1 \longdiv { 6 0 \rtimes } 0 . 4 = 7 0 . 6 \mathrm { MW }
$$

MCQ 3.8

3.8 Energy is released in the following nuclear fission of uranium-235.
${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1 \mathrm{n}}{ }_{40}^{94} \mathrm{Zr}+{ }_{52}^{139} \mathrm{Te}+3{ }_{0}^{1 \mathrm{n}}$
Which of the following statements concerning the reaction is/are correct ?
(1) The rate of the reaction can be controlled by absorbing some of the neutrons produced.
(2) Mass is conserved in the reaction.
(3) The binding energy per nucleon of ${ }_{92}^{235} \mathrm{U}$ is higher than that of ${ }_{40}^{94} \mathrm{Zr}$ or ${ }_{52}^{139} \mathrm{Te}$.

*A.	(1) only	52.07\%	A	B	C
B.	(3) only	D			
C.	(1) and (2) only favourable distractor	18.74%			\bigcirc
D.	(2) and (3) only		O		

A B C D
D. (2) and (3) only

Q. 3 Structured question

Part (a) was in general well answered although a few candidates wrongly described the change of state of the refrigerant and the heat exchanged resulted.
Q. 3 Structured question

(ii) On a sumny afternoon, the AIR TEMPERATURE is $35^{\circ} \mathrm{C}$. By using the refrigerator with cooling capacity calculated in (b)(i), briefly explain why the temperature inside the compartment CANNOT be maintained at $-15^{\circ} \mathrm{C}$.

The $2^{\text {nd }} 1 \mathrm{~A}$ can be granted only if extra heat gained is mentioned above.
Accept:

- Due to extra heat gained, the cooling capacity calculated in (b)(i) is not enough to maintain $\Delta T=50^{\circ} \mathrm{C}$
- Heat gained $>$ Heat removed if $\Delta T=50^{\circ} \mathrm{C}$

NOT accepted:

- The refrigerator is not 100% efficiency
- Energy lost / gained from surroundings

Q. 3 Structured question

\square In (b), many candidates did not realise that the calculation involving thermal conductivity only dealt with heat transfer by conduction and thus failed to answer part (b)(ii) in which radiation had a part to play.

Q． 3 Structured question

（c）Light emitting diodes（LED）are installed inside the refrigerated compartment for illumination．State Two advantages of using LED over other common types of lighting．

2A from 2 different aspects below：
－long life－time
－high efficiency／less heat／less electricity cost
environmental friendly／less disposal problem BECAUSE no／less toxic substance inside

NOT accepted：
－long time usage（使用時間長）
－cheap／low cost
－small in size／low voltage
environmental friendly without reason
no mercury without mentioning disposal problem

Q． 3 Structured question

\square Candidates＇performance in（c）was satisfactory though some of their answers were far from concise．

Paper 2

Section D: Medical Physics

HKDSE 2017
Q. 4 Multiple-choice questions
4.2 Which of the following statements about human hearing are correct ?
(1) The ear bones in the middle ear convert sound waves into vibrations of the ear drum.
(2) Pressure is amplified because of the difference in area between the ear drum and the oval window.
(3) Mechanical vibrations are converted int ρ electrical signals in the inner ear.
A. (1) and (2) only (16.91\%)
B. (1) and (3) only $\quad(15.76 \%)$ w $\quad \mathrm{z}$
C. (2) and (3) only $(40.32 \%)^{*}$
D. (1), (2) and (3) (26.35\%)

Remarks:
The sound waves are converted into vibrations of the ear drum. The ear bones act as a lever system only.
Q. 4 Multiple-choice questions
4.4 The acoustic impedances of various tissues and that of air are listed in the following table.

	acoustic impedance $\left(\times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$
fat	1.34
liver	1.65
muscle	1.71
bone	7.8
air	0.0004

Which of the following interface will givawhe larg $Z_{s t}$ intensity reflection coefficient in ultrasound scans?
A. liver - muscle $\quad(6.21 \%)$
B. fat-muscle $\quad(3.52 \%)$
C. muscle - bone $\quad(32.01 \%)$

Remarks:

intensity reflection coefficient $\propto=\frac{\left(Z_{2}-Z_{1}\right)^{2}}{\left(Z_{2}+Z_{1}\right)^{2}}$
Q. 4 Multiple-choice questions
4.5 An ultrasound transducer is used to scan the eye (Figure 4.5.1) and the echoes received are shown in Figure 4.5.2. The velocity of the ultrasound waves in the eye is $1550 \mathrm{~m} \mathrm{~s}^{-1}$.

Figure 4.5.1
The thickness of the lens is about
$\begin{array}{lll}\text { A. } & 1.6 \mathrm{~mm} . & \quad{ }^{(8.42 \%)} \\ \text { B. } & 3.5 \mathrm{~mm} . & (57.23 \%)\end{array}$
$\begin{array}{lll}\text { B. } & 3.5 \mathrm{~mm} . & (57.23 \%) \\ \text { C. } & 7.0 \mathrm{~mm} . & (29.34 \%) \\ \text { D. } & & \end{array}$
D. 18.6 mm . $\quad(4.83 \%)$

Remarks:

The time lapse between pulses (from front and back of the lens) is equal to $2 d / v$

Q. 4 Multiple-choice questions

4.7 A certain tracer Y has a biological half-life of 3 days and a physical half-life of 4 hours. What is the effective half-life of Y ?

```
A. 0.24 hours (5.26%)
B. 1.71 hours (20.93%)
C. 3.79 hours (64.42%)
D. 4.23 hours (9.30%)
```


Remarks

*1/(effective half-life) $=1 /($ biological half-life $)+1 /($ physical half-life $)$ *biological half-life should be expressed in hours.

Q. 4 Multiple-choice questions

Which of the following statements about radionuclide imaging is correct?
A. Due to the decay of the tracer, images should be taken immediately after the tracer is injected. (12.47\%)
B. The gamma camera emits gamma radiation to irradiate the tracer. (15.56\%)
C. Radionuclide imaging can clearly reveal the structure of a failed organ. (19.46\%)
D. For a period of time after injecting the tracer, excretion of the patient may be radioactive. (52.51\%)*

Remarks:

- The resolution of the image is poor.
- The image reveals the radionuclide uptake by the organ.

Q. 4 Structured question

X-ray radiographic imaging and computed tomography (CT) scans are used for medical purposes.
(a) Briefly describe how X-ray is produced. (1 mark)
(b) State an advantage of a CT scan over X-ray radiographic imaging.
(1 mark)

Q. 4 Structured question

Marking Guide

(a) X -ray is produced when fast electrons hit a heavy metal target. (1A)
(b) CT scan is better at mapping soft tissues / differentiating between overlying structures in the body / making 3D images (1A)

Remarks:

(b)
-do not accept vague answers such as "higher resolution" and "clearer image"

Q. 4 Structured question

Marking Guide

(i) The effective dose of CT scan is much higher because multiple X -ray images are taken for a CT scan.
(ii) Equivalent background radiation dose

$$
\begin{aligned}
& =1.85 \times \frac{1.5}{0.02} \\
& =138.75 \text { days }(\text { accept } 139 \text { days })
\end{aligned}
$$

Common mistakes:
(i) do not accept vague answer such as
'take more time'
'come from all directions or 360°,
(ii) Some candidates did not use correct unit for the equivalent background radiation dose

Q. 4 Structured question

(c) The effective dose of radiation absorbed can be measured in millisieverts (mSv) or expressed as the time taken to receive the equivalent dose from background radiation. The effective doses for a chest X-ray radiographic imaging and a chest CT scan are shown below.

	effective dose (mSv)	equivalent background radiation dose (days)
chest X -ray radiographic imaging	0.02	1.85
chest CT scan	6.6	610.5

(i) Briefly explain why the effective dose of a CT scan is much higher.
(1 mark)
(ii) A head CT scan has an effective dose of 1.5 mSv . Based on the information from the table, estimate its equivalent background radiation dose. (1 mark)

Q. 4 Structured question

Marking Guide
(i) The lung cavity is filled with air. / There is a large difference in density between the lung cavity and one.
(ii) The total attenuation is

The total attenuation is $I=I_{o} e^{-\left(\mu_{1} x_{1}+\mu_{2} x_{2}+\mu_{3} x_{3}\right)}$	$1 \mathrm{M}+1 \mathrm{M}$
$\frac{I}{I_{o}}=e^{-(0.1 \times 19.8+0.188 .8+0.48 \times+4)}$	
$=e^{-5.676}=3.43 \times 10^{-3}$	1A

Remarks:
(i) well answered
(ii) Some candidates just calculated the attenuations for the X-rays passing though lung cavity, soft tissue and bone respectively instead of the overall attenuation.
1 M for $I=I_{o} e^{-u x}$ (at least one correct substitution)
1 M for calculating the overall attenuation

Q. 4 Structured question

(e) A student suggests that a CT scan can be used for checking a foetus. Briefly explain whether you agree or not. If you do not agree, suggest a suitable medical imaging method for checking a foetus.
(2 marks)

Marking Guide

| | I do not agree because a CT scan may cause ionization (changes) in |
| :--- | :--- | cells / damage DNA of the foetus. (1A)

An ultrasound scan can be used for checking a foetus. (1A)

Remarks:

$1^{\text {st }} 1 \mathrm{~A}$
Accept: ionizing radiation/ killing of cells/ cancer/ heritable effects / mutation;
The End

[^0]: * : key ; Red colour : most favourable distractor

