
030724 CITA OS.ppt 1

The Hong Kong Polytechnic University
Industrial Centre

Computer Organisation
Operating Systems

Edward Cheung

email: icec@polyu.edu.hk

24 July, 2003.

Knowledge Update Course for
Secondary Computer Teachers

030724 CITA OS.ppt 2

Operating Systems

• Services and facilities provided by OS
• Single-job operations
• Concurrent operations

Multitasking
Multiprocessing

• OS organization & architecture
Monolithic kernel
Hierarchical kernel
Microkernel

• Types of user interface
• bootstrapping

030724 CITA OS.ppt 3

Agenda
• Hierarchical view of a computer and the function of an OS
• Evolution and development of OS
• Uniprogramming & Multiprogramming Systems
• Time Sharing System & Real Time OS
• Multiprocessor Systems & Clustered Systems
• Practical Desktop OSs
• Structure of OS, monolithic, layer structure, virtual

machine, microkernel
• Single Job and Concurrent Systems
• Process, Threads, Context Switching
• I/O access, file system
• Bootstrapping and User Interface
• Windows 2000 example

030724 CITA OS.ppt 4

Components of a Computer System

• Hardware – provides basic computing resources; for
example, CPU, storage, I/O devices.

• Operating system – controls and coordinates the use of the
hardware among the various application programs for the
various users.

• Utilities – Software Programs designed for system
management and software development; for example,
account management, program development.

• Applications – Software Programs designed for user to
make use of system resources to solve computing
problems; for example, scientific computing, database,
computer aided design, simulation, games, business
applications.

030724 CITA OS.ppt 5

Hierarchical View of a Computer

030724 CITA OS.ppt 6

Four Main Functions of an OS

• From the user point of view, an OS should provide the
following functions:-

Managing hardware
• Enable user to utilize computer hardware efficiently.
• Resolves conflicts for resource contention.

Managing files
• Organise information in an efficient manner.

Providing a user interface
• Enable user to use the computer conveniently.

Managing application
• Control the execution of computer program

030724 CITA OS.ppt 7

Services and facilities provided by OS

• An Operating System is a program that acts as an interface
between a user of a computer and the computer hardware.

• It is the most important program of a computer because it
manage all the computer software and hardware.

• In addition to the basic functions on resources management,
modern OS provide a security framework to protect system
information and resources.

For example, access to I/O, computational resources and files.
• Modern OSs are bundle with utilities for system application

and management.
Text editors, compilers, linkers, debuggers, etc

030724 CITA OS.ppt 8

Some Considerations in Operating System

• Must adapt to hardware upgrades and new types of
hardware. Examples:

Character vs. graphic terminals, pen input – tablet PC
Wireless devices, InfraRed devices, WLAN

• Must ready to offer new services,
e.g., internet support, multimedia, communication

• Must offer flexibility and support software reuse:-
modular construction with clean interfaces.
object oriented methodology.

• OS has two groups of users; the programmer and the
ordinary user.

030724 CITA OS.ppt 9

Views of an Operating System

• Traditionally, an OS can be view as:-
1. Resource Manager – manages and allocates resources.
2. Control program – controls the execution of user programs

and operations of I/O devices.
3. Command Executer – Provides an environment for running

user commands.
• Modern Operating System is a virtual machine:

An interface between the user and hardware that hides the
details of the hardware (e.g. I/O).
Constructs higher-level (virtual) resources out of lower-level
(physical) resources (e.g. files).

030724 CITA OS.ppt 10

Classification, Evolution and History of OS

• Early Systems (1950)
• Simple Batch Systems (1960)
• Multiprogramming Batch Job Systems (1970)
• Time-Sharing and Real-Time Systems (1970)
• Personal/Desktop Systems (1980)
• Multiprocessor Systems (1980)
• Networked/Distributed Systems (1980)
• Handheld Systems (1990)
• Wireless Systems (2000)

030724 CITA OS.ppt 11

Lesson from Simple Batch Systems

• Alternate execution between user program and the monitor
program.

• Automatic Job Sequencing was used to transfer control
from another job on job completion

• Deck of cards was used for input on one line per card.
Control cards and Job Control Languages (e.g. $LOAD,
$DATA, $END, etc.) are used to identify different
applications and data. e.g. Fortran, load data, etc.

• A technique called SPOOLing: Simultaneous Peripheral
Operation On Line was used to overcome slow peripherals
like line printer, tape drives. This allow I/O and CPU to
overlap.

• A resident monitor is used to control the system – the OS.

030724 CITA OS.ppt 12

Problem in Uniprogramming

• I/O operations are exceedingly slow (compared to
instruction execution).

• A program contains even a very small number of I/O
operations will spend most of the system time waiting
for I/O completion.

• Poor CPU usage when because only one program is
allow in the memory.

030724 CITA OS.ppt 13

Multiprogramming Batch Job System

• Allows the CPU to
execute another program
while a program must wait
for an I/O device.

• The size of the memory
must be large enough to
hold several programs in a
multiprogramming
environment.

• The OS is more complex
since it has to manipulate
computing resources.

030724 CITA OS.ppt 14

A Multiprogramming System in Action

030724 CITA OS.ppt 15

Time Sharing Systems (TSS)
• Batch job multiprogramming environment does not

support interaction with users.
• TSS extends the batch job multiprogramming environment

to handle multiple interactive jobs.
• TSS provides an interactive multiprogramming

environment to enable multiple users simultaneously
access the system through terminals.

• Processor’s time is shared among multiple users.
• Because of slow human reaction time, a typical user needs

1-2 second to interact with the system. The idle system can
be utilised by other user.

• The OS is more complicate because a job may be swapped
in and out of memory to disk.

030724 CITA OS.ppt 16

Real-Time Operating Systems (RTOS)
• RTOS are dedicated systems that need to adhere to

deadlines , i.e., time constraints.
• Correctness of the computation depends not only on the

logical result but also on the time at which the results are
produced.

• Hard Real-time System – Jobs must meet their deadlines
This criteria conflicts with general purpose time-sharing systems
which targeted at the best utilization of computing resources.
Often appear as control device for dedicated application:-

• Industrial control, Robotics, Life Maintenance
Limited resources for better control

• e.g. small size memory, limited type, program in ROM, etc.
– http://www.ucos-ii.com

• Soft Real-time System – Meeting Deadline is desirable but
not mandatory

Useful in modern applications (multimedia, virtual reality)
requiring advanced operating-system features.

030724 CITA OS.ppt 17

Desktop Systems

• Personal computer is a computer system dedicated to a
single user or a small number of users.

• I/O devices – manipulated many different resources;
keyboards, mouse, display, multimedia components,
communication adapters, etc.

• The design goal is targeted at user convenience, attractive
UI, robust but at low cost.

• Full features to support consumer type products.
• The OS must ready to adopt new technology/peripherals.
• Rapid program development environment

030724 CITA OS.ppt 18

Multiprocessor Systems

• Asymmetric multiprocessing
master processor schedules and allocates work to slave
processors.

• Symmetric multiprocessing (SMP)
Each processor runs an identical copy of the operating
system.
Typically each processor does self-scheduling form the pool
of available process.
Most modern operating systems support SMP.
e.g.Windows NT/2000/.NET, Solaris, etc.

030724 CITA OS.ppt 19

Symmetric Multiprocessing (SMP)

• Each processor can perform same functions and share the
same memory space and I/O facilities (symmetric).

• The OS schedule processes/threads across all the
processors (real parallelism).

• Existence of multiple processors is transparent to the user.
• Incremental growth in processing power by adding CPUs.
• Robustness: a single CPU failure does not halt the system,

only the performance is reduced.

030724 CITA OS.ppt 20

Clustered Systems

• Clustering allows two or more systems to share external
storage and balance CPU load.

• Asymmetric clustering
one server runs the application while other servers standby.

• Symmetric clustering
all N hosts are running the application.

• Closely coupled system
processors also have their own external memory.
communication takes place through high-speed channels.
Provides high reliability.

030724 CITA OS.ppt 21

Networked/Distributed Systems
• Loosely coupled system

each processor has its own local memory.
processors communicate with one another through various
communications lines.

• Applications
Resources Sharing
Load sharing
Reliability

• Network Operating System (NOS)
provides mainly file sharing.
Each computer runs independently from other computers on the network.

• Distributed Operating System (DOS)
gives the impression there is a single operating system controlling the
network.
network is mostly transparent – it’s a powerful virtual machine.

030724 CITA OS.ppt 22

Practical Desktop Oriented OS
• DOS

DOS is one of the legacy but popular example of OS.
Windows 3.x GUI have been developed running on top of OS
It is a good troubleshooting tool because it is simple and small.

• Windows 9x
This included Window 95/98/Me
This was the most popular OS. Still using DOS core.

• Windows NT/2000/XP
Many different versions tailored for different applications;
Workstation:-

• Professional Edition / Home Edition, Advanced Server
Server:-

• Advanced Server/ Enterprise Server / Datacenter Server to name a
few

030724 CITA OS.ppt 23

Practical Desktop Oriented OS (cont.)

• UNIX
Lack of consistency from one vendor’s version to another.

• Linux
Free basic OS, difficult to install Use X-Windows

• Mac OS X
Mach 3.0 microkernel and 4.4 BSD-Lite2 kernel
Darwin Project – http://www.opendarwin.org
Finder to provide the desktop GUI
Aqua is Apple’s name for the GUI

• Function as both server and workstation depending on
configurations

• As majority of the computer is on IA-32 architecture, we shall bias
towards Microsoft Windows System in our discussion.

030724 CITA OS.ppt 24

Operating System Structure

• During normal operation of a computer system, a portion
of the operating system remains in main memory to
provide essential services to the system. This portion of the
OS is known as the kernel.

• 5 different structures
Monolithic System
Layered System
Virtual Machine
Microkernel
Client-Server Model

030724 CITA OS.ppt 25

Monolithic Systems

• No structure at all
• Normally provide the most functionality in minimum

space – small kernel

Examples:-
•MS-DOS

Although MS-DOS has
some structure, its
interfaces and levels of
functionality are not
well separated.

•UNIX

030724 CITA OS.ppt 26

UNIX System Architecture

Hardware is beneath or surround by the operating-system. The
heart of the operating system is called the kernel and it comes
with a number of user services and interfaces such as C compiler
and command shell.

030724 CITA OS.ppt 27

Layered Systems

• The operating system is divided into a
number of layers (levels), each built on
top of lower layers. The bottom layer
(layer 0), is the hardware; the highest
(layer N) is the user interface.

• Layers are selected with modularity
concept. Each level only relies on the
function or service of the lower layers
for more primitive function.

• This approach decomposes a large
problem into a number of more
manageable problems – divide and
conquer approach.

030724 CITA OS.ppt 28

Non-virtual vs. Virtual Machine

030724 CITA OS.ppt 29

IBM VM/370
VM/370 is an OS with virtual
machines simulated on
System/370. It provide multiple
users with seemingly separate and
independent S/370 system.

DOS/VS – Disk Operating System
/ Virtual Storage

OS/VS1 – Operating System /
Virtual Storage 1

OS/MVT – Multiprogramming with
a Variable number of Task

MVS – Multiple Virtual Storage

CMS – Conversational Monitor
System

Ref:- Creasy, R.J., “The Origin of the VM/370 Time-Sharing System”, IBM J. R&D
Vol 25 Issue 5, 1981.

Current System Ref. :- http://www.ibm.com/servers/eserver/zseries/

030724 CITA OS.ppt 30

Advantages/Disadvantages of Virtual Machines

• The virtual-machine concept provides complete protection
of system resources since each virtual machine is isolated
from all other virtual machines. This isolation permits no
direct sharing of resources.

• A virtual-machine system is a perfect vehicle for
operating-systems research and development. System
development is done on the virtual machine, instead of on
a physical machine and so does not disrupt normal system
operation.

• The virtual machine concept is difficult to implement due
to the effort required to provide an exact duplicate to the
underlying machine.

030724 CITA OS.ppt 31

Java Virtual Machine

• Compiled Java programs are platform-neutral bytecodes
executed by a Java Virtual Machine (JVM).

• JVM consists of:
- class loader
- class verifier
- runtime interpreter

• Just-In-Time (JIT) compilers increase performance.

030724 CITA OS.ppt 32

The Java Virtual Machine

030724 CITA OS.ppt 33

Microkernel System
• Move as much functionality as possible from the kernel into “user

space”.
• Only a few essential functions remain in the kernel

primitive memory management (address space)
I/O and interrupt management
Inter-Process Communication (IPC)
basic scheduling

• Other OS services are provided by processes running in user mode
device drivers, file system, virtual memory

• Inherent distributed system support since communication takes place
between user modules (machines) using message passing.

• A performance penalty is caused by replacing service calls with
message exchanges between process.

030724 CITA OS.ppt 34

Microkernel Architecture

030724 CITA OS.ppt 35

Advantage of a Microkernel Architecture

• more flexible, extensible, portable and reliable
modular design is extensible and it is more easy to add
services
small microkernel simplified testing
changes needed to port the system to a new processor is
done in the microkernel - not in the other services.

• Object-oriented operating system
components are objects with clearly defined interfaces that
can be connected to software

• Examples of microkernels are Mach and QNX
http://www.qnx.com

030724 CITA OS.ppt 36

Mach 3 Microkernel Structure

030724 CITA OS.ppt 37

Windows NT

• Windows NT is a "modified microkernel" – the modularity
of microkernel design but implement the modules in kernel
mode for performance.

• many of the system functions outside the microkernel run
in kernel mode

• Uses a layered structure
Hardware abstraction layer (HAL)
makes hardware look the same to the kernel
provides support for symmetric multiprocessing

030724 CITA OS.ppt 38

Microsoft Windows Application Architecture

030724 CITA OS.ppt 39

Single-job operations

• Single-tasking
OS can run only one program at a time, passing a
single thread to the CPU.
Example is Microsoft DOS

030724 CITA OS.ppt 40

Multitasking

• Multitasking
OS is doing more than one thing at the same time. OS
managed to share resources between different tasks.

• Cooperative Multitasking
Not a true multitasking category, Also known as task
switching
In this category, if the other task is busy as visible by the
hourglass on the screen, the user cannot immediately switch
to another process like click or select another windows on
the desktop.
Example is Windows 3.x

• Preemptive Multitasking

030724 CITA OS.ppt 41

Concurrent System

• Some systems allow execution of only one process at a
time (e.g., early personal computers).

uniprogramming system

• Some systems allow more than one process to execute at a
time or concurrent execution of many processes.

multiprogramming systems

• In a multiprogramming system, the CPU switches
automatically from one process to another with each
process running for a period of time. In reality, the CPU is
actually running one and only one process at a time.

030724 CITA OS.ppt 42

Concurrent System (cont.)

• The computation process is organized into a number of
(sequential) processes, each viewed as a block of code with
a pointer showing the next instruction to be executed.

• The system need a fair scheduling mechanism
each process gets a chance to run

• The system must protect the process from interfere with
each other and they do not modify each other’s state

030724 CITA OS.ppt 43

Classification of Concurrent Operations

• hardware parallelism:
CPU computing, one or more I/O devices are running at the
same time.

• pseudo parallelism:
rapid switching back and forth of the CPU among processes,
pretending that those processes run concurrently.

• real parallelism:
can only be achieved by multiple CPUs. Single CPU systems
cannot achieve real parallelism, but keeping track of
multiple activities is difficult.

030724 CITA OS.ppt 44

Process
• A process is basically a program in execution.
• A process has its own address space

Address space is a list of memory location that the program
can read and write and it contains

• Executable code
• Data
• stack
• Pointers and registers such as program counter, stack pointer,

etc.
• A process table (An array of structures) is used to save the

information of each process.
• A process can create child processes – process tree.
• Communication between different process is called

interprocess communication.

030724 CITA OS.ppt 45

Process states
• A process can has a number of states.
• the operation of a multiprogramming system can be described by a

state transition diagram on the process states. The states of a process
include:
• New—a process being created but not yet included in the pool of

executable processes - resource acquisition
• Ready—processes that are prepared to execute when given the

opportunity.
• Active—the process that is currently being executed by the CPU.
• Blocked—a process that cannot execute until a event occur
• Stopped—a special case of blocked where the process is suspended

by the operator or the user.
• Exiting—a process that is about to be removed from the pool of

executable processes - resource release

030724 CITA OS.ppt 46

Process State Diagram

030724 CITA OS.ppt 47

Context Switching
• When an event occurs, the operating system saves the state

of the active process and restores the state of the interrupt
service routine (ISR). This mechanism is called a Context
Switch.

• Everything that the next process could or will damage must
be saved.
For example:

– Program counter (PC)
– Program status word (PSW)
– File access pointer(s)
– Memory

• While saving the state, the operating system should mask
(disable) all interrupts.

• The system is idle during context switching. Hence,
context switch time is a overhead of the process.

030724 CITA OS.ppt 48

Process Control Block

• The operating system must know specific information
about processes in order to manage and control them.

• Such information is usually grouped into two categories:
• process state information

• E.g., CPU registers (general purpose and special purpose),
program counter.

• process control information
E.g., scheduling priority, resources held, access privileges,

memory allocated, accounting.

• This collection of process information is kept in and access
through a process control block (PCB).

• OS dependent.

030724 CITA OS.ppt 49

A Process Context

030724 CITA OS.ppt 50

Threads

• Threads are light weight process (LWP)
• A thread is the abstraction of a unit of execution.
• As a basic unit of CPU utilization, a thread consists of an

instruction pointer (also referred to as the PC or instruction
counter), CPU register set and a stack.

• A thread shares its code and data, as well as system
resources and other OS related information, with its peer
group (other threads of the same process).

030724 CITA OS.ppt 51

Thread vs. Process

• A thread operates in much the same way as a process:
can be one of the several states;
executes sequentially (within a process and shares the CPU);
can issue system calls.
Creating a thread is less expensive.

• Switching threads within a process is cheaper than
switching between threads of different processes.

• Threads within a process share resources (including the
same memory address space) conveniently and efficiently
compared to separate processes.

• Threads within a process are NOT independent and are
NOT protected against each other.

030724 CITA OS.ppt 52

Accessing OS Services

• A system call is used to get access to the OS. This is a
privileged operation.

• System call interface is a set of functions that can be used
by the user to access system services.

• The only difference between a “procedure call” and a
“system call” is that a system call changes the execution
mode of the CPU to a privileged mode.

030724 CITA OS.ppt 53

Examples of System Call (UNIX)

• Process control
fork(), exec(), wait(), abort()

• File manipulation
chmod(), link(), stat(), creat()

• Device manipulation
open(), close(), ioctl(), select()

• Information maintenance
time(), acct(), gettimeofday()

• Communications
socket(), accept(), send(), recv()

030724 CITA OS.ppt 54

Interprocess Communication (IPC)

• Methods for effective sharing of information among
cooperating processes are collectively known as
interprocess communication (IPC).

• Two basic methods are used:-
shared memory

• Data are shared among processes and they are
directly available to each process in their address
spaces.

message passing
• Data are explicitly exchanged among processes.

030724 CITA OS.ppt 55

Message Passing System

• A common approach in communication is where one
process sends some information to another. The
information exchanged among processes in this way is
called a message.

• A message can be a structured (language) object, specified
by its type, or it is specified by its size: fixed length or
variable length.

• There are two basic operations on messages:
send()—transmission of a message.
receive()—receipt of a message.

• The OS component which implements these operations is
called a ‘‘ message passing’’ system.

030724 CITA OS.ppt 56

I/O Device Access

Device driver
• A software module that

attaches to the OS and
allows programs to use an
external device such as a
printer, a display system,
or a disk drive is called a
device driver.

030724 CITA OS.ppt 57

Microsoft OS - Real and Protected Modes

• Real mode is 16-bit data bus
Single task
Legacy Windows
Max. 1024k bytes memory
A memory extender for OS to provide addressing space
larger than 1MB
For compatibility only

• Protected mode is 32-bit data bus
Multitasking
Windows 98 / NT
Max 4096M bytes memory (limited by Motherboard)
Does not allow direct access to RAM but instead, the OS is
equipped with Virtual memory, swap file, page file, etc.

030724 CITA OS.ppt 58

Real Mode and Protected Mode (cont.)

• Real mode is still supported by today’s CPU and OS.
• Windows 9x / NT /2000 / XP start out in real mode and

then switch to protected mode
• 32-bit OS can run 16-bit programs and 16-bit OS cannot

run 32-bit programs.
• Windows XP’s support for Itanium-based Systems

Microsoft Win64 API and Win32 API
Virtual memory up to 16 terabytes (TB)
Interoperable with IA-32 architecture
Non-paged pool up to 128GB (256MB in Win32)

030724 CITA OS.ppt 59

Windows 9x System Structure

030724 CITA OS.ppt 60

Windows NT Modes

• User Mode
Programs have only limited access to system information
and can access hardware only through other OS services.
Example is the NT Virtual DOS Machine (NTVDM)

• Kernel Mode
Programs can access the hardware layer directly
All drivers are kernel mode programs

030724 CITA OS.ppt 61

File Systems

• Information stored in files must be persistent
• Not affected by process creation and termination
• A file should only disappear if the owner explicitly remove

it.
• Files are managed by the OS

Structure of the file
Naming rules
Access:- read/write
Protection
Implementation

030724 CITA OS.ppt 62

Loading of an OS - Bootstrapping

• A technique of bootstrapping is used in initializing the
computer and loading the operating system. - boot

• A small program that resides in the non-volatile memory of
the computer is being loaded first and the small program
will command the loading of the OS which can be resided
in the hard disk or in a on-line server.

• e,.g. Boot Sequence of Windows 2000
• POST – motherboard
• Boot initialization – OS detection
• Bootstrap loading
• Ntldr
• Boot.ini
• Ntdetect.com

030724 CITA OS.ppt 63

Command Interpreter

• Shell
In operating systems such as Unix and its variants, the shell
is a layer of the OS that sits between the user and the kernel.
The user interacts only with the shell.
command.com is the command interpreter for MS DOS

• For general computing, once the system has been loaded
into the computer or the system has been boot up
successfully, an active shell will allow communication
with user.

030724 CITA OS.ppt 64

Types of User Interface
• Command Line Driven

Interface
Simple
Difficult for ordinary user

• Menu Driven Interface
For small system such as
embedded controller

• Graphical User Interface
Computational intensive
Event oriented

030724 CITA OS.ppt 65

Example:- Windows 2000

• Features
• Design Principles
• System Architecture
• System Components
• Environmental Subsystems
• File system

030724 CITA OS.ppt 66

Features of Windows 2000
• 32-bit preemptive multitasking operating system for Intel

IA-32 microprocessors.
• Key goals for the system:

portability
security
POSIX compliance
multiprocessor support
extensibility
multiple languages support
compatibility with MS-DOS and MS-Windows applications.

• with a micro-kernel architecture.
• Available in four versions, Professional, Server, Advanced

Server, Datacenter Server.

030724 CITA OS.ppt 67

Design Principles

• Extensibility — layered architecture.
Executive, which runs in protected mode, provides the basic
system services.
On top of the executive, several server subsystems operate in
user mode.
Modular structure allows additional environmental
subsystems to be added without affecting the executive.

• Portability — 2000 can be moved from one hardware
architecture to another with relatively few changes.

Written in C and C++.
Processor-dependent code is isolated in a dynamic link
library (DLL) called the “hardware abstraction layer” (HAL).

030724 CITA OS.ppt 68

Design Principles (Cont.)

• Reliability — 2000 uses hardware protection for virtual
memory, and software protection mechanisms for
operating system resources.

• Compatibility — applications that follow the IEEE 1003.1
(POSIX) standard can be complied to run on 2000 without
changing the source code.

• Performance — 2000 subsystems can communicate with
one another via high-performance message passing.

Preemption of low priority threads enables the system to
respond quickly to external events.
Designed for symmetrical multiprocessing.

• International support — supports different locales via the
national language support (NLS) API.

030724 CITA OS.ppt 69

Windows 2000 Architecture

030724 CITA OS.ppt 70

Windows 2000 Architecture

• Layered system of modules.
• Protected mode — 3 main layers are:-

Hardware Abstraction Layer (HAL), kernel, executive.
• User mode — collection of subsystems

Environmental subsystems emulate different operating
systems.
Protection subsystems provide security functions

030724 CITA OS.ppt 71

System Files

Executive and KernelNTOSKRNL.EXE

Core Win32 subsystem DLLs
Export Win32 Entry Points

KERNEL32.DLL,
ADVAPI32.DLL,
USER32.DLL,
GDI32.DLL

Internal support functions / system service
dispatch stubs to executive functions

NTDLL.DLL

Kernel-mode part of the Win32 subsystemWIN32K.SYS

Hardware Abstraction LayerHAL.DLL

ComponentsFilename

030724 CITA OS.ppt 72

System Components — Kernel

• Foundation for the executive and the subsystems.
• Never paged out of memory; execution is never preempted.
• Four main responsibilities:

thread scheduling
interrupt and exception handling
low-level processor synchronization
recovery after a power failure

• Kernel is object-oriented, uses two sets of objects.
dispatcher objects control dispatching and synchronization
(events, mutants, mutexes, semaphores, threads and timers).
control objects (asynchronous procedure calls, interrupts,
power notify, power status, process and profile objects.)

030724 CITA OS.ppt 73

Kernel — Process and Threads

• The process has a virtual memory address space,
information (such as a base priority), and an affinity for
one or more processors.

• Threads are the unit of execution scheduled by the kernel’s
dispatcher.

• Each thread has its own state, including a priority,
processor affinity, and accounting information.

• A thread can be one of six states: ready, standby, running,
waiting, transition, and terminated.

030724 CITA OS.ppt 74

Kernel — Scheduling
• The dispatcher uses a 32-level priority scheme to determine the order

of thread execution with two priority classes.
Real-time class thread priority from 16 to 32.
Variable class thread priority from 0 to 15.

• Characteristics of W2000’s priority strategy.
Trends to give very good response times to interactive threads that
are using the mouse and windows.
Enables I/O-bound threads to keep the I/O devices busy.
Complete-bound threads soak up the spare CPU cycles in the
background.

• Scheduling can occur when a thread enters the ready or wait state,
when a thread terminates, or when an application changes a thread’s
priority or processor affinity.

• Real-time threads are given preferential access to the CPU; but W2000
does not guarantee that a real-time thread will start to execute within
any particular time limit – not a hard RTS.

030724 CITA OS.ppt 75

Kernel — Trap Handling

• The kernel provides trap handling when exceptions and
interrupts are generated by hardware of software.

• Exceptions that cannot be handled by the trap handler are
handled by the kernel's exception dispatcher.

• The interrupt dispatcher in the kernel handles interrupts by
calling either an interrupt service routine (such as in a
device driver) or an internal kernel routine.

030724 CITA OS.ppt 76

Executive

• Provides a set of services that all environmental
subsystems can use.

• The services can be grouped as follows:-
Object manager
Virtual-memory manager
Process manager
Local-procedure call facility
I/O manager
Security reference monitor

030724 CITA OS.ppt 77

Executive — Object Manager

• 2000 uses objects for all its services and entities; the object
manger supervises the use of all the objects.

Generates an object handle
Checks security.
Keeps track of which processes are using each object.

• Objects are manipulated by a standard set of methods,
namely create, open, close, delete, query
name, parse and security.

030724 CITA OS.ppt 78

Executive — Virtual Memory Manager

• The VM manager in 2000 uses a page-based management
scheme with a page size of 4 kByte.

• The 2000 VM manager uses a two step process to allocate
memory.

The first step reserves a portion of the process’s address
space.
The second step commits the allocation by assigning space
in the 2000 paging file.

• A page can be in one of six states: valid, zeroed, free
standby, modified and bad.

030724 CITA OS.ppt 79

Executive — Process Manager

• Provides services for creating, deleting, and using threads
and processes.

• Issues such as parent/child relationships or process
hierarchies are left to the particular environmental
subsystem that owns the process.

030724 CITA OS.ppt 80

Executive — Local Procedure Call Facility

• The LPC passes requests and results between client and
server processes within a single machine.

• In particular, it is used to request services from the various
2000 subsystems.

• When a LPC channel is created, one of three types of
message passing techniques must be specified.

First type is suitable for small messages, up to 256 bytes;
port's message queue is used as intermediate storage, and the
messages are copied from one process to the other.
Second type avoids copying large messages by pointing to a
shared memory section object created for the channel.
Third method, called quick LPC was used by graphical
display portions of the Win32 subsystem.

030724 CITA OS.ppt 81

Executive — I/O Manager

• The I/O manager is responsible for
file systems
• Keeps track of which installable file systems are loaded,

and manages buffers for I/O requests.
cache management
• Controls the 2000 cache manager, which handles caching

for the entire I/O system.
device drivers
• Works with VM Manager to provide memory-mapped

file I/O.
network drivers
• Supports both synchronous and asynchronous operations,

provides time outs for drivers, and has mechanisms for
one driver to call another.

030724 CITA OS.ppt 82

File I/O

030724 CITA OS.ppt 83

Executive — Security Reference Manager

• The object-oriented nature of 2000 enables the use of a
uniform mechanism to perform runtime access validation
and audit checks for every entity in the system.

• Whenever a process opens a handle to an object, the
security reference monitor checks the process’s security
token and the object’s access control list to see whether the
process has the necessary rights.

• Executive - Plug-and-play Manager
Both the device and the OS must support PnP
Assign interrupts and I/O memory ranges automatically.

030724 CITA OS.ppt 84

Environmental Subsystems
• User-mode processes layered over the native W2000

executive services to enable W2000 to run programs
developed for other operating system.

e.g. 16-bit windows, MS-DOS, POSIX,
• W2000 uses the Win32 subsystem as the main operating

environment to start all processes. It also provides all the
keyboard, mouse and graphical display capabilities.

• MS-DOS environment is provided by a Win32 application
called the virtual dos machine (VDM) - a user-mode
process

• Provide routines to emulate MS-DOS ROM, virtual device
drivers for I/O ports

• Any MS-DOS application that needs to access hardware
directly will failed to run in W2000.

030724 CITA OS.ppt 85

File System

• The fundamental structure of the 2000 file system (NTFS)
is a volume.

Created by the 2000 disk administrator utility.
Based on a logical disk partition.
May occupy a portions of a disk, an entire disk, or span
across several disks.

• All metadata, such as information about the volume, is
stored in a regular file.

• NTFS uses clusters as the underlying unit of disk
allocation.

A cluster is a number of disk sectors that is a power of two.
Because the cluster size is smaller than for the 16-bit FAT
file system, the amount of internal fragmentation is reduced.

030724 CITA OS.ppt 86

File System — Internal Layout

• NTFS uses logical cluster numbers (LCNs) as disk
addresses.

• A file in NTFS is not a simple byte stream, as in MS-DOS
or UNIX, rather, it is a structured object consisting of
attributes.

• Every file in NTFS is described by one or more records in
an array stored in a special file called the Master File Table
(MFT).

• Each file on an NTFS volume has a unique ID called a file
reference. It can be used to perform internal consistency
checks.

• The NTFS name space is organized by a hierarchy of
directories; the index root contains the top level of the B+
tree.

030724 CITA OS.ppt 87

File System — Recovery
• All file system data structure updates are performed inside

transactions.
Before a data structure is altered, the transaction writes a log
record that contains redo and undo information.
After the data structure has been changed, a commit record
is written to the log to signify that the transaction succeeded.
After a crash, the file system data structures can be restored
to a consistent state by processing the log records.
This scheme does not guarantee that all the user file data can
be recovered after a crash, just that the file system data
structures (the metadata files) are undamaged and reflect
some consistent state prior to the crash.

• The logging functionality is provided by the 2000 log file
service.

030724 CITA OS.ppt 88

File System — Security

• Security of an NTFS volume is derived from the 2000
object model.

• Each file object has a security descriptor attribute stored in
this MFT record.

• This attribute contains the access token of the owner of the
file, and an access control list that states the access
privileges that are granted to each user that has access to
the file.

030724 CITA OS.ppt 89

File System — Compression

• To compress a file, NTFS divides the file’s data into
compression units, which are blocks of 16 contiguous
clusters.

• For sparse files, NTFS uses another technique to save
space.

Clusters that contain all zeros are not actually allocated or
stored on disk.
Instead, gaps are left in the sequence of virtual cluster
numbers stored in the MFT entry for the file.
When reading a file, if a gap in the virtual cluster numbers is
found, NTFS just zero-fills that portion of the caller’s buffer.

030724 CITA OS.ppt 90

Portable Operating System Interface (POSIX)
• Different versions of UNIX such as AT&T’s System V and BSD’s derivatives

such as Sun Microsystems’ Solaris and Apple’s Darwin.
• IEEE Portable Application Standards Committee (PASC) – an IEEE standard

http://www.pasc.org/
• POSIX compliance is required in many US government procurements.
• A POSIX compliant OS will work effectively with any application that limits

itself to the POSIX standard set of Application Programming Interface (API).
• For the most part POSIX used only those functions that were common to the

two mainstream UNIX variants (System V and BSD) and it is a subset of real
world UNIX.

• Windows NT/2000 also support POSIX.
• The goal of POSIX was to "shrink wrapped" applications that would work

without modification on different OSs.
• But when Software vendors doing development on different OSs, they usually

have to tune their application in order to get the best possible performance for
a particular platform. Hence compliance with POSIX doesn’t mean that you
have a good software.

030724 CITA OS.ppt 91

Reference

1. A. Silberschatz, P. B. Galvin, and G. Gagne, “Operating
Systems Concepts”, 6th Edition, John Wiley & Sons,
2002.
http://www.bell-labs.com/topic/books/os-book/

2. A. Silberschatz, P. B. Galvin, and G. Gagne, “Applied
Operating Systems Concepts”, 1st Edition, John Wiley &
Sons, 2000.
http://www.bell-labs.com/topic/books/aos-book/

3. W. Stallings, “Operating Systems: Internals and Design
Principles”, 4th Edition, Prentice-Hall, 2000.
http://WilliamStallings.com/OS4e.html

4. D.A. Solomon, and M.E. Russinovich, “Inside Microsoft
Windows 2000”, 3rd Edition, Microsoft Press, 2000.

